AD-A195 087 1/2 UNCLASSIFIED NI. MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1962-A 2 D-A195 087 # NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS NUMBER OF SAMPLES NEEDED TO OBTAIN DESIRED BAYESION CONFIDENCE INTERVALS FOR A PROPORTION рÀ Robert B. Manion March 1988 Thesis Advisor: G. F. Lindsay Approved for public release; distribution is unlimited | REPORT DOCUMENTATION PAGE | | | | | | | | | | | | |---|----------------------|--|---|---|---------------------------|-----------------------|---------------------------|--|--|--|--| | | SECURITY CLAS | SIFICATION | | 16 RESTRICTIVE MARKINGS | | | | | | | | | Za. SECURITY | CLASSIFICATIO | N AUTHORITY | | 3 DISTRIBUTION/AVAILABILITY OF REPORT | | | | | | | | | 26 DECLASS | FICATION / DOV | NOGRADING SCHEDU | LE | Approved for public release; distribution is unlimited. | | | | | | | | | 4. PERFORMING ORGANIZATION REPORT NUMBER(S) | | | | 5 MONITORING ORGANIZATION REPORT NUMBER(S) | | | | | | | | | 6a. NAME OF | PERFORMING | ORGANIZATION | 66 OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION | | | | | | | | | Naval E | ostgradu | ate School | (If applicable)
55 | Naval Po | stgraduate | School | | | | | | | Sc. ADDRESS | (City, State, an | nd ZIP Code) | | 76. ADDRESS (Cit | y, State, and ZIP C | ode) | | | | | | | Montere | ey, CA | 93943-5000 | | Monterey | , CA 9394 | 13-5000 | i | | | | | | 8a. NAME OF
ORGANIZA | FUNDING/SPO
ATION | ONSORING | 8b OFFICE SYMBOL
(If applicable) | 9. PROCUREMENT | INSTRUMENT IDE | NTIFICATION NU | MBER | | | | | | &c. ADDRESS | (City, State, and | 1 ZIP Code) | | 10 SOURCE OF F | UNDING NUMBERS | 5 | | | | | | | | | | | PROGRAM
ELEMENT NO. | PROJECT
NO. | TASK
NO | WORK UNIT
ACCESSION NO | | | | | | 11 TITLE (inc | lude Security C | NUM | BER OF SAMPLE
NFIDENCE INTE | | | | AYESIAN | | | | | | 12 PERSONA | L AUTHOR(S) | Robert B. | . Manion | | | | | | | | | | | 's Thesi | | to | 14 DATE OF REPO
1988 Ma | rch | 10 | 09 | | | | | | and do | not refl | rion The viev
lect the off
U.S. Govern | ws expressed
Ficial policy
Twent. | in this th
or positi | esis are to on of the | hose of the Departmen | the author
nt of | | | | | | 17 | COSATI | | 18 SUBJECT TERMS (| Continue on reverse | e if necessary and | identify by bloc | k number) | | | | | | FIELD | GROUP | SUB-GROUP | Bayesian Met | | | | | | | | | | | | | Prior Distri
Posterior Di | | | interval S | Size, | | | | | | 19 ABSTRACT | (Continue on | reverse if necessary | | | · | | | | | | | | This thesis analyzes a Bayesian method for determining the number of samples that are needed to produce a desired confidence interval size for a proportion or probability. It compares the necessary sample size from Bayesian methods with that from classical methods and develops computer programs relating sample size and confidence interval size when a Beta prior distribution is employed. Tables and graphs are developed to assist an experimenter in determining the number of samples needed to produce desired confidence in this estimate of a proportion or probability. (Keywarts: theses, densired making; Statistical data), | | | | | | | | | | | | | | | ILITY OF ABSTRACT | PT DTIC USERS | 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED | | | | | | | | | | | | PET LI DITIC USERS | | nciuda Area Code)
2688 | 220 OFFICE SY | MBOL | | | | | | G. F. L | F RESPONSIBLE | - - | | (408) 646 | 2688 | j 55L: | S | | | | | Approved for public release; distribution is unlimited. NUMBER OF SAMPLES NEEDED TO OBTAIN DESIRED BAYESIAN CONFIDENCE INTERVALS FOR A PROPORTION by Robert B. Manion Captain, United States Army B.S., United States Military Academy, 1978 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH from the NAVAL POSTGRADUATE SCHOOL March 1988 Approved by: Robert B. Manion Approved by: Bard K. Monsey Bard Mansager, Second Reader Peter Purdue, Chairman, Department of Operations Research James M. Fremger, Acting Dean of Information and Policy Sciences ## **ABSTRACT** This thesis analyzes a Bayesian method for determining the number of samples that are needed to produce a desired confidence interval size for a proportion or probability. It compares the necessary sample size from Bayesian methods with that from classical methods and develops computer programs relating sample size and confidence interval size when a Beta prior distribution is employed. Tables and graphs are developed to assist an experimenter in determining the number of samples needed to produce desired confidence in this estimate of a proportion or probability. | Acces | sion For | 7 | |-------|----------|-------| | NTIS | GRA&I | M | | DTIC | TAB | | | Unani | cunced | | | Justi | rication | · | | | ibution/ | Codes | | | Avail an | d/or | | Dist | Specia | 1 | | A-1 | | | ## TABLE OF CONTENTS | INT | RODUCTION 1 | L | |-----------|--|---| | | | 4 | | A. | THE POINT ESTIMATE FOR A PROPORTION | 1 | | В. | DETERMINING THE CONFIDENCE INTERVAL FOR A PROPORTION | 5 | | c. | FINDING SAMPLE SIZE FROM CONFIDENCE INTERVAL | 5 | | BAY | ESIAN APPROACH TO ESTIMATE A PROPORTION 10 | O | | A. | BAYES THEOREM AND ITS PARTS | 1 | | в. | THE SELECTION OF THE PRIOR 12 | 2 | | c. | DERIVATION OF THE POSTERIOR DISTRIBUTION 15 | 5 | | | | 8 | | A. | SELECTION OF PARAMETERS FOR THE BETA PRIOR DISTRIBUTION USING THE DECISION MAKER'S SUBJECTIVE BOUNDS ON THE UNKNOWN PROPORTION | 9 | | в. | | | | c. | DETERMINING SAMPLE SIZE USING COMPUTER PROGRAMS | 9 | | | | 3 | | A. | FINDING THE NECESSARY SAMPLE SIZE FOR BETA PRIOR DISTRIBUTIONS WITH THE SAME MEAN 33 | 3 | | В. | DETERMINING THE REQUIRED SAMPLE SIZE AS THE S PARAMETER IS VARIED AND THE C PARAMETER IS HELD CONSTANT | 7 | | | FINIA PI A. B. C. BAYI A. B. C. SOMI | B. DETERMINING THE CONFIDENCE INTERVAL FOR A PROPORTION | | VI. | SUM | MARY | AND | SUC | GES | TI | ons | FOF | FUE | RTHER | ST | UDY | • | • • • | • • • | • • | 41 | |-----------------|-------|---------|-----------|-------|---------|-----|-------|---------|---------|-----------|-------|-------|-------|-------|-------|-----|-----| | | A. | COM | PENDI | UM | • • • | •• | | | •••• | · • • • | • • • | • • • | • • | • • • | | • • | 41 | | | B. | REC | OMMEN | IDA' | rion | s : | FOR | FUR | THE | R RES | EAR | CH | • • • | • • • | • • • | • • | 42 | | APPE NDI | IX A | • • • • | • • • • | • • • | | •• | ••• | • • • • | •••• | · • • • • | ••• | • • • | • • • | • • • | • • • | •• | 44 | | APPEND | сх в | • • • • | • • • • | • • • | • • • • | •• | ••• | • • • • | •••• | | ••• | • • • | • • • | • • • | • • • | •• | 54 | | APPEND | ίχ c | • • • • | • • • • | • • • | | •• | ••• | • • • • | • • • • | | ••• | • • • | • • | • • • | • • • | •• | 73 | | APPENDI | X D | • • • • | • • • • | • • • | • • • • | •• | ••• | • • • • | ••• | • • • • | ••• | ••• | •• | • • • | • • • | •• | 74 | | APPENDI | X E | • • • • | • • • • | • • • | • • • • | •• | ••• | • • • • | ••• | | ••• | • • • | •• | •• | • • • | •• | 76 | | APPENDI | X F | • • • • | • • • • | • • • | • • • • | •• | | • • • • | •••• | | ••• | ••• | •• | | | •• | 79 | | APPENDI | IX G | • • • • | • • • • • | • • • | • • • • | •• | • • • | • • • • | ••• | | ••• | ••• | •• | •• | • • • | •• | 81 | | APPENDI | тх н | • • • • | • • • • | • • • | • • • • | •• | • • • | | • • • • | | ••• | ••• | •• | • • | • • • | •• | 82 | | REFEREN | ICES | • • • • | • • • • | • • • | • • • • | •• | • • • | • • • • | • • • • | | ••• | ••• | •• | •• | ••• | • | 101 | | INITIAI | L DIS | STRII | BUTIC | ON 1 | LIST | • | • • • | | | | | | | | | • | 102 | , #### I. INTRODUCTION The Naval Air Systems Command has established the Age Exploration Program for F/A-18 aircraft using Reliability-Centered Maintenance procedures in an effort to reduce maintenance costs by specifying only maintenance insuring flight integrity. Among other features of this program, fleet leader aircraft are sampled on a regular basis, with emphasis on inspection for cracks in selected structural components. Because of the potential dangers presented by cracks in aircraft, the Engineering Support Office at North Island Naval Air Station is concerned with determining the actual probability of detection of these cracks for each of its aircraft inspectors. Their proposal is to prepare test specimens (with cracks) which may be used to sample an inspector's detection performance, leading to estimates of detection probability. This thesis responds to their question of how many trials are necessary to estimate detection probability, and to the more general question of the sample size needed to estimate a proportion or probability using a set of Bernoulli trials. There are many ways to produce estimators for unknown parameters such as our parameter; the probability of detection. Some of these methods have excellent properties. After examining North Island's problem, we came to the conclusion that the best way to estimate the unknown probability would be to use a
confidence interval. "A confidence interval for an unknown parameter gives both an indication of the numerical value of an unknown parameter as well as a measure of how confident we are of that numerical value." [Ref. 1:p. 383] It is important to note that the size of the confidence interval depends upon the number of samples used to determine the confidence interval. The primary focus of our study will be to determine the number of samples needed to obtain a specific confidence interval size for a proportion or probability. It will be seen that the approaches used throughout this work can be applied to more situations than just North Island's problem. By using the extensive tables and graphs included in the appendices of this document, the decision maker can relate the necessary number of samples to the appropriate confidence interval size that is warranted by his situation. There are various methods that can be used to find a sample size to estimate a proportion or a probability. In Chapter II we will describe how we can use Classical methods to determine sample size. We will explain how we can determine a point estimate and how this point estimate can be used to obtain a confidence interval. Then we will use the confidence interval to determine the number of samples necessary to achieve a desired confidence interval size. In the next chapter we will describe the prior, sampling, and posterior distributions as they are related to Bayes Theorem. Also, in Chapter III we will introduce the Beta density function as our prior distribution. Then using the Binomial as our sampling distribution, we will show that the posterior density function is also Beta. In Chapter IV we will include an explanation of how a decision maker can determine his parameters for the Beta prior distribution. We will develop a set of graphs that can be used by this decision maker to determine the necessary sample size to obtain a desired 95% confidence interval size for the proportion. The next chapter will explain how we can use different Beta prior distributions with the same mean to determine the required sample size for estimating a proportion. Finally, we will present a summary of what we accomplished and some suggestions for further research in using Bayesian methods to reduce the necessary number of samples to estimate a proportion or probability. # II. FINDING A SAMPLE SIZE TO ESTIMATE A PROPORTION USING CLASSICAL METHODS This chapter will explain how we can use classical methods to find a sample size to estimate a proportion or probability. First, we will describe how we can attain a point estimate for a probability. Then we will use this point estimate to establish a confidence interval for the proportion. The confidence interval for the proportion that is derived from the point estimate will provide a measure of how accurate this point estimate is. Next, we will use the confidence interval to determine how many samples we will need for a particular interval size. #### A. THE POINT ESTIMATE FOR A PROPORTION "Typically, in a problem of parameter estimation we assume we have available a random sample of a random variable X, whose probability law is assumed known, except for the values for the parameters of the probability law. The problem then is to use the observed numbers to guess (estimate) these unknown parameter values." [Ref. 1:p. 359] From this one can say in general, that the estimator of an unknown parameter will be a function of the random variable X. One method that can be used to estimate our unknown proportion is to obtain a point estimate. "Basically, point estimation concerns the choosing of a statistic, that is, a single number calculated from sample data (and perhaps other information) for which we have some expectation, or assurance, that it is 'reasonably close' to the parameter it is supposed to estimate". [Ref. 2:p. 186] If we were to consider North Island's problem, we could calculate a point estimate for our detection probability P_d by assuming that each inspection conducted by a specific aircraft inspector was a Bernoulli trial with the same parameter P_d . We will assume that each trial is independent. If we conduct n inspections on n cracked aircraft components, and let $X_i = 1$ if crack in component is discovered $X_i = 0$ otherwise then x_1, x_2, \ldots, x_n is a random sample of a Bernoulli random variable X. Once our trials are completed we have observed sample values x_1, x_2, \ldots, x_3 and we can estimate our proportion by the following, $$\hat{p}_d = \frac{1}{n} \sum_{i=1}^n x_i.$$ $$\hat{p}_d = \frac{k}{n}$$ (2.1) or where $$k = \sum_{i=1}^{n} x_i$$ This is the point estimate for our proportion. #### B. DETERMINING THE CONFIDENCE INTERVAL FOR A PROPORTION A common classical method for obtaining a 95% confidence interval for detection probability $P_{\hat{\mathbf{d}}}$ is to use the normal approximation to the binomial distribution, which is $$\hat{p}_d - 1.96 \sqrt{\frac{\hat{p}_d (1 - \hat{p}_d)}{n}} \le p_d \le \hat{p}_d + 1.96 \sqrt{\frac{\hat{p}_d (1 - \hat{p}_d)}{n}}.$$ [Ref. 3:p. 112] (2.2) "A good rule of thumb is to use the normal approximation to the binomial only when np and n(1-p) are both greater than 5." [Ref. 2:p. 112] With Equation 2.2 we can compute a 95% confidence interval for our proportion. For example, suppose that 20 items with cracks are inspected and 15 are identified as having cracks. Then from Equation 2.1 our point estimate of detection P_d is 0.75 and the 95% confidence interval is, from Equation 2.2, $$0.75 - 0.19 \le P_d \le 0.75 + 0.19$$, or $$0.56 \le P_d \le 0.94$$. This says that as a result of our sample of 20 items, we are 95% certain that this interval (0.56 to 0.94) contains the true value of our proportion P_d . One can observe that the interval size for this example is 0.38. One can also observe from Equation 2.2 that the greater the sample size n, the smaller will be the size of the confidence interval. ### C. FINDING SAMPLE SIZE FROM CONFIDENCE INTERVAL The size of our sample can be determined by specifying how accurate we wish our estimate to be. This is reflected by the size of our confidence interval. Note that the interval is $$P_d \pm A$$, where $$A = 1.96\sqrt{\frac{\hat{p}_d(1-\hat{p}_d)}{n}}.$$ (2.3) Hence, if we desire a confidence interval of \pm A, we simply solve Equation 2.3 for n and get $$n = \left(\frac{1.96}{A}\right)^2 \hat{p}_d \left(1 - \hat{p}_d\right). \tag{2.4}$$ If we are without any prior data we must guess at our sample result P_d , in order to determine n. However, sample size from Equation 2.4 is maximized at $P_d = 0.5$, so if we do not want to guess, worst case planning suggests that we use $$n = \left(\frac{1.96}{A}\right)^2 (0.5) (0.5)$$ or $$n = 0.9604/A^2$$. This yields the results seen in Table 1 which show the required number of samples to obtain a 95% confidence interval of various sizes when $P_{\rm d}$ = 0.5. This is conservative. If we agreed that the probable detection probability was closer to 0.7, we would use $$n = \left(\frac{1.96}{A}\right)^2 (0.7) (0.3)$$ or $$n = 0.8067/A^2$$ This yields the results seen in Table 2 which shows the required number of samples to obtain a 95% confidence interval sizes when $P_{\rm d}$ = 0.7. TABLE 1 NUMBER OF SAMPLES NECESSARY TO OBTAIN A DESIRED 95% CONFIDENCE INTERVAL SIZE USING A POINT ESTIMATE OF $P_d=0.5$ | Desired 95% Confidence
Interval Size = 2A | Required
Size | | |--|------------------|--| | 0.05 | 1537 | | | 0.10 | 384 | | | 0.15 | 171 | | | 0.20 | 96 | | | 0.25 | 62 | | | 0.30 | 43 | | | 0.35 | 32 | | TABLE 2 NUMBER OF SAMPLES NECESSARY TO OBTAIN A DESIRED 95% CONFIDENCE INTERVAL SIZE USING A POINT ESTIMATE OF $P_d = 0.7$ | Desired 95% Confidence
Interval Size = 2A | Required Sample
Size n | |--|---------------------------| | 0.05 | 1291 | | 0.10 | 323 | | 0.15 | 143 | | 0.20 | 81 | | 0.25 | 52 | | 0.30 | 36 | | 0.35 | 26 | In Chapter III we will discuss how we can use Bayesian Methods to estimate a proportion, and how by the use of prior information, the needed number of observations may be less than that shown in Tables 1 and 2 above. ### III. BAYESIAN APPROACH TO ESTIMATE A PROPORTION Another way we can determine a sample size to estimate a proportion is to use a Bayesian approach. The general idea behind a Bayesian approach to estimation is that we have some knowledge about possible values of the parameter prior to taking the observations, and this information may be aggregated with the experimental results to provide a better estimate (smaller confidence interval) than that from the experimental results alone. In this chapter we will describe the Bayesian approach that will be used throughout this writing. We will accomplish this by describing the three parts of the Bayesian method that are related by Bayes Theorem: the prior distribution, the sampling distribution and the posterior distribution. Next we will explain our rationale for selecting the Beta distribution as our prior density function and the Binomial as our sampling distribution. Finally, we will use the Beta prior distribution and the Binomial sampling distribution to derive our posterior density function, yielding the known result that the posterior density function is a Beta distribution with different parameters than the prior distribution. #### A. BAYES THEOREM AND ITS PARTS An alternative method to estimate a proportion is to use a Bayesian approach. This Bayesian approach makes use of the expertise of engineers, scientists and others who generally have sound intuition concerning the problem area that is being analyzed. These experts can place subjective bounds on the range of the possible values of the parameters to be estimated. By using this expert intuition we can achieve the same confidence interval size with fewer samples. Bayesian methods are derived from Bayes
Theorem. If we let Y be a continuous random variable with density function f(Y) so that $$\int_{-\infty}^{\infty} f(Y)dY = 1,$$ and we are given effect k, Bayes theorem states that $$Pr(Y \mid k) = \frac{Pr(k \mid Y)f(Y)}{\int_0^n Pr(k \mid Y)(Y)dY}.$$ [Ref. 4:p. 558] (3.1) Equation 3.1 can be broken into three parts. The sampling distribution is $P_{\mathbf{r}}(k|Y)$. The sampling distribution is the probability function from which the observations of k are to be taken. The prior distribution is f(Y). "The prior distribution of a parameter θ is a probability function or probability expressing our degree of belief about the value of θ , prior to observing a sample of a random variable k whose distribution function depends on θ ." [Ref. 1:p. 553] The posterior distribution is f(Y|k) and its mean value is our Bayesian Estimate. #### B. THE SELECTION OF THE PRIOR We will use the posterior distribution of our Bayesian approach to estimate θ . The value θ is our proportion and can take on any value between 0 and 1. Therefore, our prior probability distribution must be continuous. The expertise of those familiar with the problem area may provide prior bounds (on the proportion) that are closer than 0 and 1.0, and the prior probability distribution should reflect this information. Two ways to set bounds on 0 (the unknown probability) and consequently establish a prior probability distribution would be to use the Uniform distribution or the Beta distribution. The uniform density function is $$f(\theta) = \frac{1}{\theta_{hi} - \theta_{lo}}$$ $$0 \le \theta_{lo} \le \theta \le \theta_{hi} \le 1,$$ (3.2) where, and the Beta density function is $$f(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1} ,$$ $$(3.3)$$ where $$0 \le \theta \le 1$$, $\alpha, \beta > 0.$ Figure 1 shows a Uniform distribution for a random variable that is bounded between 0.142 and 0.858, and a Beta distribution that has 98% of its density between 0.142 and Figure 1 Beta Distribution ($\alpha = 4$, $\beta = 4$) and Uniform Distribution a = 0.142, b = 0.858 0.858 (viz., 1% in each tail), with parameters $\alpha=4$, $\beta=4$. The points (0.142 and 0.858) that bound 98% of the density of the Beta distribution were determined by calculating the inverse cumulative distribution function of a Beta distribution with parameters $\alpha=4$, $\beta=4$, at 0.01 and 0.99. This method can be duplicated using other values of α and β to insure that 98% of the density will lie between the two resulting points. By using the Beta distribution, our experts will be able to better control their prior beliefs. If a group of experts feel that the likelihood of 0 occurring in a particular section is greater than that of it occurring in another section, then by selecting the appropriate parameters α and β of the Beta distribution, they can institute a prior distribution to accommodate their desires. these and other reasons we will use the Beta distribution as our prior distribution. If the experimentor simply gives bounds on 0 as he would for a uniform distribution, a Beta prior (as a two parameter distribution) may be "fit" to those bounds. Also, one should remember that the Beta distribution can be skewed to one side or the other, based on the values of α and β . This should be taken into account when selecting the prior. The probability function from which we will take our observations of k will be the binomial distribution. This is because the binomial distribution counts the number of success for n Bernoulli trials, viz., $$Pr(k \mid p) = \binom{n}{k} p^k (1-p)^{n-k}$$, $k = 0, 1, ..., n$ (3.4) #### C. DERIVATION OF THE POSTERIOR DISTRIBUTION Using a prior distribution that is Beta (α, β) and a sample distribution that is binomial (n, p), we have from Equations 3.1, 3.3, and 3.4, posterior distribution: $$Pr(p \mid k) = \frac{\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \binom{n}{k} p^{k} (1 - p)^{n - k}}{\int_{0}^{1} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} \binom{n}{k} p^{k} (1 - p)^{n - k} dp}$$ where k is the number of successes. If we combine terms, our posterior becomes $$Pr(p \mid k) = \frac{\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \binom{n}{k} p^{\alpha+k-1} (1-p)^{\beta+n-k-1}}{\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\&\beta)} \binom{n}{k} \int_0^1 p^{\alpha+k-1} (1-p)^{\beta+n-k-1} dp}$$ Now we can cancel out terms. Notice that the combinatorial $\begin{pmatrix} n \\ k \end{pmatrix}$ cancels out. We now have $$Pr(p \mid k) = \frac{p^{z+k-1}(1-p)^{\beta+n-k-1}}{\int_0^1 p^{z+k-1}(1-p)^{\beta+n-k-1}dp}.$$ This can be rewritten as $$Pr(p \mid k) = \frac{p^{\alpha+k-1}(1-p)^{\beta+n-k-1}}{\frac{\Gamma(\alpha+k)\Gamma(\beta+n-k)}{\Gamma(\alpha+k+\beta+n-k)}}$$ or $$Pr(p \mid k) = \frac{\Gamma(\alpha + \beta + n)}{\Gamma(\alpha + k)\Gamma(\beta + n - k)} p^{\alpha + k - 1} (1 - p)^{\beta + n - k - 1}$$ which is our posterior distribution. The posterior derived above is a Beta distribution with parameters α + k and β + n - k and is a well-known result from Bayesian statistics. [Ref. 1:p. 565] In the Bayesian approach the point estimate of p is the mean of the posterior, or E[p|X], and a 95% confidence interval on that parameter θ is provided by the 2.5 and 97.5 percentiles of the posterior distribution. Thus, with a Beta prior and Bernoulli trials, the size of the resulting confidence interval depends upon the parameters of the prior $(\alpha$ and β), the sample size n, and k, the number of successes in the sample. As in the classical method, we need to know the number of successes to determine sample size n. Therefore, we are going to make the assumption that k, the number of successes, will equal the mean of our prior distribution multiplied by the number of samples or $$\left(\frac{\alpha}{\alpha+\beta}\right)n$$. This will result in the most conservative value of k if α = β because it maximizes the variance of the Beta posterior distribution, and it should result in a "fairly" conservative value otherwise. Making this assumption, we now have $$Pr(p \mid k) = \frac{\Gamma(\alpha + \beta + n)}{\Gamma(\alpha + (\frac{\alpha}{\alpha + \beta})n)\Gamma(\beta + n - (\frac{\alpha}{\alpha + \beta})n)} p^{2 + (\frac{2}{2 + \beta})n - 1} (1 - p)^{\beta + n - (\frac{2}{2 + \beta})n - 1}$$ which becomes $$Pr(p \mid k) = \frac{\Gamma(x+\beta+n)}{\Gamma(x+(\frac{\alpha}{\alpha+\beta})n)\Gamma(\beta+(\frac{\beta}{\alpha+\beta})n)} p^{\alpha+(\frac{\alpha}{\alpha+\beta})n-1} (1-p)^{\beta(\frac{\beta}{\alpha+\beta})n-1}.$$ If, at this point, we let $\alpha * = \alpha + (\underline{\alpha})$ n and let $\beta * \underline{\alpha + \beta}$ $$= B + (\underline{\beta}) \text{ n, we get}$$ $$Pr(p \mid k) = \frac{\Gamma(\alpha^* + \beta^*)}{\Gamma(\alpha^*)\Gamma(\beta^*)} p^{\alpha^* - 1} (1 - p)^{\beta^* - 1}.$$ (3.5) Equation 3.5 is the posterior distribution that we will use throughout the remainder of this thesis. One should note that Equation 3.5 is Beta $(\alpha*, \beta*)$. In the next chapter we will discuss how we developed tables, graphs and computer programs that can be used by an experimenter to determine the necessary sample size to estimate a proportion. # IV. PROVIDING THE DECISION MAKER THE MEANS TO DETERMINE THE APPROPRIATE SAMPLE SIZE In this chapter we will direct our attention to using the Bayesian approach as a way to find the sample size to estimate a proportion. The decision maker will be asked for information about subjective bounds for the unknown proportion p. This information can be related to a prior Beta distribution. From this Beta distribution and a specification of the decision maker's desired 95% confidence interval size (which he wishes after the sampling), the necessary sample size may be determined. Our goal is to provide tables and curves to facilitate the decision maker in his determination of n. First, we will describe the tables with which the decision maker can select the parameters for his prior Beta distribution that are the most appropriate for his subjective bounds. Next, we will describe how we constructed these tables. When this is completed we will discuss our methodology for developing the curves which can be used by our decision maker to determine the appropriate sample size for a proportion. Finally, we will use an example to describe how the decision maker can use the curves and computer programs to determine sample size. Throughout this chapter we will explain how our computer programs assisted us in our analysis and describe how these programs can be used to assist another analyst in determining the sample size necessary to estimate a proportion. At this point it is necessary to note that all programs presented in this writing were written in APL and can be duplicated on any computer capable of running an APL workspace. It should also be noted that these programs use extensive looping and may require a significant amount of time to run on some computers. A. SELECTION OF PARAMETERS FOR THE BETA PRIOR DISTRIBUTION USING THE DECISION MAKER'S SUBJECTIVE BOUNDS ON THE UNKNOWN PROPORTION Before we can employ our Bayesian approach to determine a sample size, we need to find the values for α and β , the parameters of the Beta prior distribution, that best fit our decision maker's subjective bounds. To determine these values, the decision maker could use a set of tables such as those found in Appendix A. He could simply scan these tables until he found the values in the columns labelled P.10 and P.hi that best reflect his subjective bounds for the unknown proportion. As an example we have reproduced one of these tables as Table 3. If the decision maker believes that the true value of the proportion is
somewhere between 0.14 and 0.86 he would go down the table until he found values in the third and fourth columns that are near 0.14 and 0.86 respectively. In this example the decision maker would select the fourth row with $P._{10} = 0.142270$ and $P._{hi} = 0.857730$. We can see TABLE 3 MEANS, VARIANCES, AND 98% BOUNDS FOR BETA DISTRIBUTION WITH α = 4 | <u>α</u> | <u>B</u> | <u>P.lo</u> | P.hi | Mean | <u>Var</u> | |----------|----------|-------------|---------|---------|------------| | 4 | 1 | .421318 | .997491 | .800000 | .026667 | | 4 | 2 | .222072 | .967318 | .666667 | .031746 | | 4 | 3 | .173070 | .915270 | .571429 | .030612 | | 4 | 4 | .142270 | .857730 | .500000 | .027778 | | 4 | 5 | .120950 | .801798 | .444444 | .024691 | | 4 | 6 | .105262 | .749974 | .400000 | .021818 | | 4 | 7 | .093214 | .702884 | .363636 | .019284 | | 4 | 8 | .083660 | .660417 | .333333 | .017094 | | 4 | 9 | .075895 | .622193 | .307692 | .015216 | | 4 | 10 | .069455 | .587759 | .285714 | .013605 | | 4 | 11 | .064028 | .556669 | .266667 | .012222 | | 4 | 12 | .059390 | .528514 | .250000 | .011029 | | 4 | 13 | .055381 | .502936 | .235294 | .009996 | | 4 | 14 | .051880 | .479621 | .222222 | .009097 | | 4 | 15 | .048797 | .458298 | .210526 | .008310 | | 4 | 16 | .046061 | .438734 | .200000 | .007619 | | 4 | 17 | .043615 | .420729 | .190476 | .007009 | | 4 | 18 | .041417 | .404110 | .181818 | .006468 | | 4 | 19 | .039430 | .388727 | .173913 | .005986 | | 4 | 20 | .037625 | .374451 | .166667 | .005556 | | 4 | 21 | .035978 | .361170 | .160000 | .005169 | | 4 | 22 | .034470 | .348784 | .153846 | .004821 | | 4 | 23 | .033083 | .337208 | .148148 | .004507 | | 4 | 24 | .031804 | .326367 | .142857 | .004222 | | 4 | 25 | .030620 | .316193 | .137931 | .003964 | the corresponding values for the parameters that best fit that our decision maker's subjective bounds are α = 4 and β = 4. In Chapter III we described a method that would insure 98% of our Beta prior density was between two possible values for our proportion. This method involved taking the inverse cumulative distribution function for a specific Beta distribution at 0.01 and 0.99. This is the method we used to design a computer program that could construct a set of tables to determine the values of α and β . To create Table 3 and Appendix A we used the APL program entitled SENSE located in Appendix C. SENSE makes use of the APL subroutines BQUAN, NQUAN and BETA which are located in Appendix D. These subroutines calculate the inverse cumulative distribution function of a Beta distribution at 0.01 and 0.99, yielding the bound values (P. $_{10}$ and P. $_{hi}$) in our tables. SENSE uses nested loops to vary the values of α from 1 to 5 and vary β from 1 to 50. More extensive tables could be created by increasing the loops controlling the maximum values of our parameters. This can be accomplished in accordance with the comments provided at the beginning of SENSE. Next, we will show how these parameters and the decision maker's desired 95% confidence interval size may be used to find the necessary sample size. #### B. DETERMINING SAMPLE SIZE WITH GRAPHS In this section we will develop a set of graphs. These graphs can be used by a decision maker to facilitate his determination of sample size n using the parameters of the Beta prior distribution and a desired 95% confidence interval size. To accomplish this we will first explain our methodology in developing the graphs. Then by use of an example, we will explain how the decision maker can use these graphs to determine the required sample size necessary to estimate a proportion. In Chapter III we derived our posterior density function which was a Beta distribution with parameters α^* , β^* . It was also stated in Chapter III that we assumed k, the number of successes, to be that which would result from the mean value of the Beta prior distribution, or $\left(\frac{\alpha}{\alpha+\beta}\right)^n$. This assumption results in the parameters of our posterior Beta distribution being $$\alpha^* = \alpha + \left(\frac{\alpha}{\alpha + \beta}\right)n \tag{4.1}$$ and $$\beta^* = \beta + \left(\frac{\beta}{\alpha + \beta}\right)^n \tag{4.2}$$ where α and β are the parameters of our prior distribution and n is the sample size. Once we have obtained the parameters of our Beta posterior distribution we can compute the inverse cumulative distribution function at 0.025 and 0.975 for a Beta distribution with parameters $\alpha*$ and $\beta*$. This will yield the lower and upper bounds of a 95% confidence interval. We can then subtract the lower bound from the upper bound to determine the size of the confidence interval. Table 4 demonstrates (for a Beta prior with $\alpha=\beta=4$) what happens as sample size n is increased from 1 to 1000. It can be seen, as in the classical method, that when sample size increases, the confidence interval size decreases. Hence, with enough values of n we could create a table that would tell us the value of n when we reached our desired confidence interval size. At this point it is important to realize that our computer program uses subroutine BQUAN to calculate the inverse cumulative density function at 0.025 and 0.975. BQUAN has a shortcoming, in that, it cannot compute the inverse cumulative distribution function for large values of α^* and β^* . Hence, it is necessary that we use another method to determine the bounds of our confidence interval for large parameters. The Beta distribution has the following relationship with the F-distribution. That is $$X_r = \frac{\alpha^* F_r(2\alpha^*, 2\beta^*)}{\beta^* + \alpha^* F_r(2\alpha^*, 2\beta^*)}$$ [Ref. 5:p. 151 and p. 380] (4.3) where X_{Γ} is the cumulative distribution function for the Beta posterior distribution at the r^{th} quantile, and $F_{\Gamma}(a,b)$ is the distribution function for an F-distribution with a,b degrees of freedom. Equation 4.3 was previously mentioned in Chapter III. We also used a software package developed by Dr. Peter W. Zehna of the Naval Postgraduate School to evaluate the F-distribution at r. This was done in the following manner: - 1. We selected integer values of sample size n that were at, or near, 500 and 1000. These values were selected to insure that $\alpha*$ and $\beta*$ were also integers. - 2. We computed $\alpha*$ and $\beta*$ using Equations 4.1 and 4.2 respectively. - 3. The values of $F_{0.025}$ ($2\alpha^*$, $2\beta^*$) and $F_{0.975}$ ($2\alpha^*$, $2\beta^*$), where α^* and β^* were calculated using n near 500, were placed in a vector, along with the value of n and saved in the APL workspace. This vector is referred to as the X vector. - 4. The values of $F_{0.025}$ ($2\alpha^*$, $2\beta^*$) and $F_{0.975}$ ($2\alpha^*$, $2\beta^*$), where α^* and β^* were calculated using n near 1000, were placed in a vector along with the value of n and saved in the APL workspace. This vector is referred to as the Y vector. To employ our method we developed an APL program named CHARTPLUS located in Appendix E. CHARTPLUS is the main program used in our analysis and it accomplishes several functions. First, CHARTPLUS provides the subjective bounds associated with the parameters of the Beta prior distribution. It creates a table similar to Table 4. Finally, CHARTPLUS makes a vector of the lower bounds, the upper bounds and the confidence interval size, for each sample size. To use CHARTPLUS, the user is required to enter the parameters of the prior Beta distribution, a vector of various sample sizes, and the X and Y vectors described TABLE 4 THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVAL, WITH BETA PRIOR $(\alpha = 4, \beta = 4)$ AND $k = (\alpha/\alpha + \beta)$ n SUCCESS IN THE SAMPLE | SAMPLE | | | LOWER | UPPER | DESIRED | |--------|------------|------------|---------------|-------|---------| | SIZE n | <u>α *</u> | <u>β *</u> | BOUND | BOUND | SIZE 2A | | 1 | 4.5000 | 4.5000 | .1990 | .8010 | .6021 | | | 5.0000 | 5.0000 | .2120 | .7880 | .5760 | | 2 3 | 5.5000 | 5.5000 | .2235 | .7765 | .5529 | | 4 | 6.0000 | 6.0000 | .2338 | .7662 | .5324 | | 5 | 6.5000 | 6.5000 | .2430 | .7570 | .5140 | | 6 | 7.0000 | 7.0000 | .2513 | .7487 | .4973 | | 7 | 7.5000 | 7.5000 | .2589 | .7411 | .4821 | | 8 | 8.0000 | 8.0000 | .2659 | .7341 | .4683 | | 9 | 8.5000 | 8.5000 | .2722 | .7278 | .4555 | | 10 | 9.0000 | 9.0000 | .2781 | .7219 | .4438 | | 15 | 11.5000 | 11.5000 | .3020 | .6980 | .3961 | | 20 | 14.0000 | 14.0000 | .3 195 | .6805 | .3610 | | 25 | 16.5000 | 16.5000 | .3331 | .6669 | .3338 | | 30 | 19.0000 | 19.0000 | .3440 | .6560 | .3120 | | 35 | 21.5000 | 21.5000 | .3530 | .6470 | .2940 | | 40 | 24.0000 | 24.0000 | .3606 | .6394 | .2787 | | 43 | 26.5000 | 26.5000 | .3672 | .6328 | .2656 | | 50 | 29.0000 | 29.0000 | .3729 | .6271 | .2542 | | 55 | 31.5000 | 31.5000 | .3779 | .6221 | .2441 | | 60 | 34.0000 | 34.0000 | .3824 | .6176 | .2352 | | 65 | 36.5000 | 36.5000 | .3864 | .6136 | .2272 | | 70 | 39.0000 | 39.0000 | .3900 | .6100 | .2199 | | 75 | 41.5000 | 41.5000 | .3934 | .6066 | .2133 | | 30 | 44.0000 | 44.0000 | .3964 | .6036 | .2072 | | 85 | 46.5000 | 46.5000 | .3992 | .6008 | .2017 | | 90 | 49.0000 | 49.0000 | .4017 | .5983 | .1966 | | 100 | 54.0000 | 54.0000 | .4063 | .5937 | .1874 | | 110 | 59.0000 | 59.0000 | .4103 | .5897 | .1793 | | 120 | 64.0000 | 64.0000 | .4139 | .5861 | .1723 | | 130 | 69.0000 | 69.0000 | .4170 | .5830 | .1660 | | 140 | 74.0000 | 74.0000 | .4198 | .5802 | 1603 | | 150 | 79.0000 | 79.0000 | .4224 | .5776 | .1552 | | 160 | 84.0000 | 84.0000 | .4247 | .5753 | .1506 | | 170 | 89.0000 | 89.0000 | .4268 | .5732 | .1463 | | 180 | 94.0000 | 94.0000 | .4288 | .5712 | .1424 | | 190 | 99.0000 | 99.0000 | .4306 | .5694 | .1388 | | 200 | 104.0000 | 104.0000 | .4323 | .5677 | .1354 | | 504 | 256.0000 | 256.0000 | .4568 | .5433 | .0865 | | 1000 | 504.0000 | 504.0000 | .4692 |
.5308 | .0617 | earlier in this section. CHARTPLUS starts a loop that evaluates each value of our vector of sample sizes. Typically, our vectors contained values of sample sizes from 1 to 200. CHARTPLUS can evaluate vectors with other values of sample size. However, a 'good rule of thumb' is to limit the maximum sample size to 200. This is due to BQUAN's inability to compute large values of $\alpha*$ and $\beta*$. After CHARTPLUS initiates looping it calls subroutine INTER2 (see Appendix E). INTER2 calculates $\alpha*$ and $\beta*$ using Equations 4.1 and 4.2. Then INTER2 calls subroutines BQUAN, NQUAN and BETA to calculate the inverse cumulative distribution functions for the Beta posterior distribution with parameters $\alpha*$, $\beta*$ at 0.025 and 0.975. This gives us the upper and lower values of our confidence interval. INTER2 then subtracts the lower bound from the upper bound to obtain the confidence interval size and returns to CHART-PLUS. CHARTPLUS then formats the output and creates vectors in the APL workspace of the lower bounds, the upper bounds and the confidence interval sizes. CHARTPLUS continues to loop until our sample size vector is exhausted. Then CHARTPLUS calls subroutine CHARTER. CHARTER is located in Appendix E and uses the X and Y vectors to calculate $\alpha*$, $\beta*$, the lower and upper bounds of the confidence interval and the interval size for the values of sample size n at, or near, 500 and 1000. CHARTER then formats the output in the exact same way as CHARTPLUS and concatenates each of the three vectors created in CHARTPLUS with the lower bound, upper bound, and interval size for n at or near 500 and 1000. If we plot our vector of lower bounds and our vector of upper bounds as a function of our sample size vector we can obtain graphs shown in Figure 2 and in Appendix B. It is important that the decision maker realize these figures are not the confidence intervals. The actual confidence intervals must be determined after the samples are taken. If we plot our vector of confidence interval sizes as a function of our sample size vector we obtain graphs as shown in Figure 3 and in Appendix B. These graphs can prove to be useful to the decision maker as seen in the following example, Figure 2 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α =4, β =4 Figure 3 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 4$, $\beta = 4$ Suppose the decision maker's prior Beta distribution parameters are $\alpha=4$, $\beta=4$, the same as determined in Section A of this chapter. In addition, suppose the decision maker desires the size of the 95% confidence interval for estimating the proportion to be 0.20. Then the decision maker can use Figure 3 to determine the most appropriate sample size to meet these criteria. The decision maker can find 0.20 on the ordinate, move across the graph to where 0.20 intercepts the curve, and read approximately 87 off the abscissa. This is the most appropriate sample size for n that reflects both the decision maker's subjective bounds and his desired 95% confidence interval size. In the next section we will introduce a pair of computer programs that can be used to obtain the same results as graphing the confidence interval size for specific parameters of the Beta prior distribution. #### C. DETERMINING SAMPLE SIZE USING COMPUTER PROGRAMS Because it is possible that the decision maker may be without graphic capability and has input values not provided in the tables here, we have developed a pair of computer programs that can be used to facilitate his determination of n using the parameters of the Beta prior distribution and a desired 95% confidence interval size. We will do this by explaining the computer programs in detail. Then we will provide an example that will demonstrate how a decision maker can use these programs to determine the needed sample size to estimate a proportion. The APL program SCHARTS was developed to assist the user in finding an interval of sample sizes. This interval contains the exact number of samples necessary to achieve the decision maker's desired 95% confidence interval size and is determined using the parameters that best fit his subjective bounds. SCHARTS, located in Appendix F, requires the user to input the parameters of Beta prior distribution and a vector of various sample sizes. SCHARTS analyzes the sample size vector and identifies the two elements in the vector between which the exact number of samples required lies. If the vector of sample sizes fails to contain this exact number necessary to satisfy the decision maker's criteria, SCHARTS will inform the user. SCHARTS is a modification of CHARTPLUS, uses the same subroutines (with the exception of CHARTER), and in general cannot evaluate sample sizes greater than 200. Once we have found the interval containing the required number of samples, we use the APL program entitled CHARTS located in Appendix E. CHARTS allows the user to enter new sample size vectors of any length and produces parameters α^* , β^* , together with the lower and upper bounds of the confidence interval, and the 95% confidence interval size for each element in the vector. CHARTS asks the user to input the parameters of the Beta prior distribution and a vector (of any length) of various sample sizes. The user should select a vector that contains all the integer values of the interval identified by SCHARTS. If the user inputs these elements in numerical order his output will be in the order of decreasing confidence interval size. This will allow the user to select the smallest value of sample sizes that meets or surpasses his desired 95% confidence interval size. Suppose, continuing our example, that our decision maker's Beta prior distribution has the parameters α =4, β = 4 and his desired 95% confidence interval size is 0.20. Then he can use SCHARTS and CHARTS in the following manner to determine the sample size that will meet his goals. We will identify our vector of sample sizes as C. We assign C the values in the following APL session shown in Figure 4. ``` C+30 40 50 60 70 80 90 SCHARTS ENTER ALPHA AND BETA PARAMETERS : : ENTER VECTOR OF SAMPLE SIZES : C LIMITS FOR 0.20 ALPHA BETA N CI SIZE 4 4 80 .20725 4 4 90 .19655 ``` CHARTS ENTER VALUES OF ALPHA AND BETA PARAMETERS 1: ENTER NEW SAMPLE SIZE VECTOR, MUST ENTER AT LEAST 2 NUMBERS 0: | 81 82
N
81.0000
82.0000
83.0000 | 83 84 85 86
A*
44.5000
45.0000
45.5000 | 87 88 89
B*
44.5000
45.0000
45.5000 | P.LO
.3970
.3975 | P.HI
.6030
.6025 | CI SIZE
.20610
.20497
.20386 | |--|--|--|---|---|--| | 84.0000
85.0000
86.0000
87.0000
88.0000
89.0000 | 46.0000
46.5000
47.0000
47.5000
48.0000
48.5000 | 46.0000
46.5000
47.0000
47.5000
48.0000
48.5000 | .3986
.3992
.3997
.4002
.4007 | .6014
.6008
.6003
.5998
.5993 | .20276
.20169
.20063
.19958
.19856 | Figure 4 An APL Session using the Programs SCHARTS and CHARTS We see that when n is 87 we have surpassed our decision maker's desired confidence interval size. Hence, 87 is the number of samples he should take. In the next chapter we will discuss other uses of the Bayesian approach to find the number of samples needed to obtain a desired 95% confidence interval size. # V. SOME ADDITIONAL WAYS THAT THE BAYESIAN METHOD CAN BE USED TO DETERMINE SAMPLE SIZE In this chapter we will discuss other ways that our Bayesian approach can be used to assist in finding the number of samples required to obtain a desired 95% confidence interval size for a proportion. First, we will discuss the relationship between different Beta prior distributions with the same mean and their sample sizes. We will accomplish this by deriving an equation that illustrates this relationship. Then we will describe a computer program that can be used to graph this relationship. We will also explain how analysts can use this graph to determine sample size. Finally, we will illustrate what happens to the sample size necessary to achieve a desired 95% confidence interval size for a proportion when the α parameter of the prior distribution is held constant and the β parameter is varied. We will do this by use of a graph with which the analyst can determine the number of samples required for a particular 95% confidence interval size as β is varied. A. FINDING THE NECESSARY SAMPLE SIZE FOR BETA PRIOR DISTRIBUTIONS WITH THE SAME MEAN Suppose our prior density is Beta (α, β) , so that the mean for our prior density is $$\frac{\alpha}{\alpha + \beta} = Q$$ If at some sample size n we obtain the desired confidence interval size on our Beta posterior distribution, then for any other prior density, Beta (α', β') , whose mean is equal to Q, we can determine the new sample size n' by $$n' = n + \frac{\alpha - \alpha'}{Q}. \tag{5.1}$$ We can show this by assuming that our desired confidence interval size is achieved when our posterior is Beta ($\alpha*$, $\beta*$). Let us also assume that $$\alpha^* = \alpha + \left(\frac{\alpha}{\alpha + \beta}\right)^n \tag{5.2}$$ and $$\beta^* = \beta + \left(\frac{\beta}{\alpha + \beta}\right)^n \tag{5.3}$$ Now, if we have a different Beta prior with parameters α' and β' , one can reason that there exists some sample size value n' that, when used in our Bayesian approach, will result in our posterior distribution being
Beta $(\alpha*, \beta*)$. Hence, we want $$\alpha^* = \alpha' + \left(\frac{\alpha'}{\alpha' + \beta'}\right)n' \tag{5.4}$$ and $$\beta^* = \beta' + \left(\frac{\beta'}{\alpha' + \beta'}\right) n' \tag{5.5}$$ We must allow n' to be a continuous number. When we compare Equation 5.2 with 5.4 we can state $$\alpha' + \left(\frac{\alpha'}{\alpha' + \beta'}\right)n' = \alpha + \left(\frac{\alpha}{\alpha + \beta}\right)n'$$ If the means of our two Beta prior distributions equal Q we have $$\alpha' + Q \times n' = \alpha + Q \times n.$$ When we solve for n we get $$n' = n + \frac{\alpha - \alpha'}{Q}.$$ It can be shown that this value of the new sample size n can be substituted into Equation 5.5 to obtain $\beta*$. We used Equation 5.1 in developing the APL program named SMEAN located in Appendix G. SMEAN provides the user with the necessary sample size to obtain a desired 95% confidence interval size when $\alpha=1$. It also provides the α parameter when the necessary sample size is zero. Therefore, the user has two points he can plot on a graph. In addition, SMEAN provides the user with the slope of the line connecting these two points. SMEAN asks the user to provide the number of samples necessary to obtain a desired 95% confidence interval size for a proportion. In addition, it asks for the parameters of the Beta prior distribution. Figure 5 was constructed using SMEAN, from a Beta prior distribution with parameters $\alpha=4$, $\beta=4$. The necessary sample sizes for each confidence interval size were determined using Figure 3 in Chapter IV. The analyst can use Figure 5 to determine the sample size required for any α parameter. He can do this by locating the α parameter that he wants on the abscissa, then Figure 5 Number of samples needed for estimation of a proportion for a Beta Prior with Mean = 0.5 selects the desired 95% confidence interval size line, and reads the corresponding ordinate. If the analyst has no graphic capabilities, he can use the APL program entitled GENERAL located in Appendix G. GENERAL provides the user with the required sample size for a desired 95% confidence interval size for different Beta distributions which have the same mean. The user must know the necessary sample size to obtain a desired 95% confidence interval size for at least one of these Beta prior distributions. In the last section of this chapter we will show what happens to the required sample size when the α parameter of the prior distribution is held constant and the β parameter is varied. ## B. DETERMINING THE REQUIRED SAMPLE SIZE AS THE eta PARAMETER IS VARIED AND THE lpha PARAMETER IS HELD CONSTANT In this section we demonstrate what happens to the sample size required to obtain a desired 95% confidence interval size as the β parameter of the prior distribution is varied and the α parameter is held constant. We accomplish this by constructing Figures 6 and 7. These figures were constructed using the APL program CHARTS. Through trial and error we entered vectors with different sample sizes for n until we reached the exact 95% confidence interval size for a particular α parameter of the prior density. Then we changed our β parameter and repeated this process. We used approximately 20 different values of β for each α we evaluated. Then we plotted our results. It should be mentioned that to do this we treated n as if it were a continuous variable. The analyst can use these charts by varying the β parameter of the prior distribution on the abscissa. Then, he can find the curve for his α parameter and determine how his sample size changes on the ordinate. Similar graphs can be developed to see the effect of varying α and holding β constant using the methods discussed in this section. Figure 6 Number of Samples needed for Estimation of a Proportion when the α Parameter of the Beta Prior is Constant, the β Parameter Varied, and Desired Confidence Interval Size is 0.20. Figure 7 Number of Sample Needed for Estimation of a Proportion When the α Parameter of the Beta Prior is Constant, the β Parameter is Varied, and the Desired Confidence Interval Size is 0.15. In the next chapter we will summarize what we have accomplished, and suggest some additional research in using Bayesian methods to reduce the number of observations needed to estimate a proportion. ## VI. SUMMARY AND SUGGESTIONS FOR FURTHER STUDY In this chapter we will summarize how we developed tables and graphs, through Bayesian methods, which can be used by a decision maker to relate confidence interval size and the corresponding number of samples needed to produce that or a smaller confidence interval for a proportion. Included in this summary will be a comparison of the results obtained using the tables and graphs with the Classical Methods mentioned in Chapter II. Finally, we will make recommendations for some additional research in using Bayesian methods to reduce the number of observations needed to estimate a proportion. ### A. COMPENDIUM In this paper we described a method that uses the Beta distribution to place bounds on the possible outcomes for an unknown proportion. Equipped with this method we were able to create tables that could be used to find the appropriate parameters α and β to give the Beta distribution that fits a decision maker's subjective bounds. Our next step was to evaluate the posterior Beta distribution using various sample sizes. We did this by calculating the lower bound, the upper bound, and the 95% confidence interval size for each of the various sample sizes. We then plotted the 95% confidence interval as a function of sample size and obtained the graphs in Appendix B. The decision maker can use these graphs to determine the number of samples needed to obtain a desired confidence interval size. As an example, if the decision maker wanted the size of the 95% confidence interval to be 0.20 and his subjective bounds on the proportion were 0.14 to 0.86, the parameter on the Beta prior would be $\alpha=4$, $\beta=4$ and the number of observations needed would be 87. If the decision maker's subjective bounds were "tighter", then using our tables and graphs would result in even fewer samples to obtain a final confidence interval of the sample size. For example, if subjective bounds reflected $\alpha=15$, $\beta=15$, the number of samples needed would be reduced to 65. These results compare quite favorably to those obtained using non-Bayesian methods where the number of samples needed is 96. In the next section we suggest some additional studies to enhance our understanding of the ways Bayesian methods may be used to reduce the number of samples required to estimate a proportion. ### B. RECOMMENDATIONS FOR FURTHER RESEARCH This paper dealt solely with 95% confidence intervals. It would extend the usefulness of this approach if tables and graphs could be developed for other confidence interval sizes, such as 90% and 99%. The techniques that we discussed used the Beta distribution for our prior density function. Other density functions, such as the Uniform distribution, could be considered for the prior density function. Here, the subjective bounds could define the prior uniform (rectangular) distribution for the proportion. An addition to our research would be the development of an APL program that could determine the inverse cumulative density function of the Beta distribution for large values of α and β . This could result in a more extensive set of tables and graphs which could be used to determine sample size. It is sincerely hoped that the tables, graphs and computer programs embodied in this thesis will be beneficial to the Engineering Support Office at North Island Naval Air Station and others faced with the problem of determining the number of samples necessary to estimate proportion. # APPENDIX A. TABLES THAT CAN BE USED TO DETERMINE THE PARAMETERS TO FIT A DECISION MAKER'S SUBJECTIVE BOUNDS Table 5. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB-UTION WITH ALPHA = 1 AND BETA LESS THAN OR EQUAL TO 25 | <u>x</u> | <u>B</u> | P.lo | <u>P.hi</u> | Mean | <u>Var</u> | |----------|------------------|---------|-------------|---------|------------| | l | 1 | .010000 | .990000 | .500000 | .083333 | | l | 2 | .005013 | .899997 | .333333 | .055556 | | | 2
3
4
5 | .003345 | .784555 | .250000 | .037500 | | | 4 | .002509 | .683645 | .200000 | .026667 | | | | .002008 | .601237 | .166667 | .019841 | | | 6 | .001674 | .534319 | .142857 | .015306 | | | 7 | .001435 | .479547 | .125000 | .012153 | | | 8 | .001256 | .434215 | .111111 | .009877 | | | 9 | .001116 | .396255 | .100000 | .008182 | | | 10 | .001005 | .364105 | .090909 | .006887 | | | 11 | .000913 | .336590 | .083333 | .005876 | | | 12 | .000837 | .312811 | .076923 | .005072 | | | 13 | .000773 | .292081 | .071429 | .004422 | | | 14 | .000718 | .273864 | .066667 | .003889 | | | 15 | .000670 | .257741 | .062500 | .003447 | | | 16 | .000628 | .243376 | .058824 | .003076 | | | 17 | .000591 | .230503 | .055556 | .002762 | | | 18 | .000558 | .218904 | .052632 | .002493 | | | 19 | .000529 | .208402 | .050000 | .002262 | | | 20 | .000502 | .198850 | .047619 | .002061 | | | 21 | .000478 | .190126 | .045455 | .001886 | | | 22 | .000457 | .182128 | .043478 | .001733 | | | 23 | .000437 | .174770 | .041667 | .001597 | | | 24 | .000419 | .167979 | .040000 | .001477 | | | 25 | .000402 | .161692 | .038462 | .001370 | Table 6. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB-UTION WITH ALPHA = 1 AND BETA BETWEEN 25 AND 50 | <u>α</u> | <u>B</u> _ | <u>P.lo</u> | <u>P.hi</u> | Mean | <u>Var</u> | |----------|------------|-------------|-------------|---------|------------| | 1 | 26 | .000386 | .155855 | .037037 | .001274 | | 1 | 27 | .000372 | .150423 | .035714 | 881100. | | i | 28 | .000359 | .145354 | .034483 | .001110 | | i | 29 | .000347
| .140614 | .033333 | .001039 | | l | 30 | .000335 | .136171 | .032258 | .000976 | | 1 | 31 | .000324 | .131999 | .031250 | .000917 | | 1 | 32 | .000314 | .128075 | .030303 | .000864 | | 1 | 33 | .000305 | .124376 | .029412 | .000816 | | 1 | 34 | .000296 | .120883 | .028571 | .000771 | | 1 | 35 | .000287 | .117581 | .027778 | .000730 | | 1 | 36 | .000279 | .114454 | .027027 | .000692 | | 1 | 37 | .000272 | .111488 | .026316 | .000657 | | 1 | 38 | .000264 | .108672 | .025641 | .000625 | | 1 | 39 | .000258 | .105993 | .025000 | .000595 | | 1 | 40 | .000251 | .103444 | .024390 | .000567 | | i | 41 | .000245 | .101014 | .023810 | .000541 | | 1 | 42 | .000239 | .098695 | .023256 | .000516 | | i | 43 | .000234 | .096480 | .022727 | .000494 | | 1 | 44 | .000228 | .094361 | .022222 | .000472 | | 1 | 45 | .000223 | .092334 | .021739 | .000452 | | l | 46 | .000218 | .090392 | .021277 | .000434 | | l | 47 | .000214 | .088530 | .020833 | .000416 | | 1 | 48 | .000209 | .086742 | .020408 | .000400 | | l | 49 | .000205 | .085025 | .020000 | .000384 | | l | 50 | .000201 | .083375 | .019608 | .000370 | Table 7. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA = 2 AND BETA LESS THAN OR EQUAL TO 25 | <u>x</u> _ | B | <u>P.lo</u> | P.hi | Mean | <u>Var</u> | |------------|----------------------------|-------------|---------|---------|------------| | | 1 | .100635 | .994987 | .666667 | .055556 | | | 2 | .058903 | .941097 | .500000 | .050000 | | | 1
2
3
4
5
6 | .041999 | .859132 | .400000 | .040000 | | | 4 | .032682 | .777928 | .333333 | .031746 | | | 5 | .026763 | .705686 | .285714 | .025510 | | | 6 | .022665 | .643365 | .250000 | .020833 | | | 7 | .019658 | .589942 | .222222 | .017284 | | | 8 | .017357 | .544034 | .200000 | .014545 | | | 9 | .015538 | .504353 | .181818 | .012397 | | | 10 | .014065 | .469816 | .166667 | .010684 | | | 11 | .012847 | .439543 | .153846 | .009298 | | | 12 | .011824 | .412826 | .142857 | .008163 | | | 13 | .010952 | .389095 | .133333 | .007222 | | | 14 | .010199 | .367890 | .125000 | .006434 | | | 15 | .009544 | .348838 | .117647 | .005767 | | | 16 | .008967 | .331633 | .111111 | .005198 | | | 17 | .008457 | .316023 | .105263 | .004709 | | | 18 | .008001 | .301800 | .100000 | .004286 | | | 19 | .007592 | .288790 | .095238 | .003917 | | | 20 | .007223 | .276844 | .090909 | .003593 | | | 21 | .006888 | .265840 | .086957 | .003308 | | | 22 | .006582 | .255670 | .083333 | .003056 | | | 23 | .006303 | .246245 | .080000 | .002831 | | | 24 | .006046 | .237485 | .076923 | .002630 | | | 25 | .005810 | .229324 | .074074 | .002450 | Table 8. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA = 2 AND BETA BETWEEN 25 AND 50 | <u>x</u> _ | <u>B</u> _ | P.lo | P.hi | Mean | <u>Var</u> | |------------|------------|---------|---------|---------|------------| | | 26 | .005591 | .221702 | .071429 | .002287 | | 2 | 27 | .005388 | .214568 | .068966 | .002140 | | ? | 28 | .005200 | .207877 | .066667 | .002007 | | | 29 | .005024 | .201589 | .064516 | .001886 | | | 30 | .004859 | .195668 | .062500 | .001776 | | | 31 | .004706 | .190084 | .060606 | .001674 | | | 32 | .004561 | .184809 | .058824 | .001582 | | : | 33 | .004425 | .179818 | .057143 | .001497 | | | 34 | .004297 | .175089 | .055556 | .001418 | | | 35 | .004176 | .170601 | .054054 | .001346 | | | 36 | .004062 | .166337 | .052632 | .001278 | | | 37 | .003954 | .162280 | .051282 | .001216 | | | 38 | .003851 | .158416 | .050000 | .001159 | | | 39 | .003754 | .154732 | .048780 | .001105 | | | 40 | .003662 | .151214 | .047619 | .001055 | | | 41 | .003574 | .147853 | .046512 | .001008 | | | 42 | .003490 | .144637 | .045455 | .000964 | | | 43 | .003409 | .141558 | .044444 | .000923 | | | 11 | .003333 | .138608 | .043478 | .000885 | | | 45 | .003260 | .135777 | .042553 | .000849 | | | 46 | .003190 | .133060 | .041667 | .000815 | | | 47 | .003123 | .130449 | .040816 | .000783 | | | 48 | .003058 | .127938 | .040000 | .000753 | | | 49 | .002997 | .125522 | .039216 | .000725 | | | 50 | .002938 | .123196 | .038462 | .000698 | Table 9. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIB-UTION WITH ALPHA = 3 AND BETA LESS THAN OR EQUAL TO 25 | <u>α_</u> | <u>B</u> _ | P lo | P.hi | <u>Mean</u> | <u>Var</u> | |---|------------|---------|---------|-------------|------------| | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 1 | .233813 | .996655 | .750000 | .037500 | | 3 | 2 3 | .140868 | .958001 | .600000 | .040000 | | 3 | | .105640 | .894360 | .500000 | .035714 | | 3 | 4 | .084730 | .826930 | .428571 | .030612 | | 3 | 5 | .070804 | .763676 | .375000 | .026042 | | 3 | 6 | .060840 | .706770 | .333333 | .022222 | | 3 | 7 | .053348 | .656315 | .300000 | .019091 | | 3 | 8 | .047507 | .611743 | .272727 | .016529 | | 3 | 9 | .042823 | .572323 | .250000 | .014423 | | 3 | 10 | .038982 | .537343 | .230769 | .012680 | | 3 | 11 | .035775 | .506171 | .214286 | .011224 | | 3 | 12 | .033057 | .478264 | .200000 | .010000 | | 3 | 13 | .030723 | .453166 | .187500 | .008961 | | 3 | 14 | .028698 | .430493 | .176471 | .008074 | | 3 | 15 | .026923 | .409923 | .166667 | .007310 | | 3 | 16 | .025356 | .391187 | .157895 | .006648 | | 3 | 17 | .023961 | .374055 | .150000 | .006071 | | 3 | 18 | .022711 | .358335 | .142857 | .005566 | | 3 | 19 | .021586 | .343864 | .136364 | .005120 | | } | 20 | .020567 | .330500 | .130435 | .004726 | | 3 | 21 | .019640 | .318123 | .125000 | .004375 | | 3 | 22 | .018793 | .306630 | .120000 | .004062 | | 3 | 23 | .018016 | .295930 | .115385 | .003780 | | 3 | 24 | .017301 | .285945 | .111111 | .003527 | | } | 25 | .016640 | .276606 | .107143 | .003299 | Table 10. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA = 3 AND BETA BETWEEN 25 AND 50 | <u>x</u> | <u>B</u> | <u>P.lo</u> | P.hi | <u>Mean</u> | <u>Var</u> | |---|----------|-------------|---------|-------------|------------| | 3 | 26 | .016028 | .267853 | .103448 | .003092 | | 3 | 27 | 915460 | .259633 | .100000 | .002903 | | 3 | 28 | .014930 | .251899 | .096774 | .002732 | | | 29 | .014436 | .244610 | .093750 | .002575 | | | 30 | .013973 | .237728 | .090909 | .002431 | | | 31 | .013539 | .231221 | .088235 | .002299 | | | 32 | .013131 | .225058 | .085714 | .002177 | | | 33 | .012747 | .219215 | .083333 | .002065 | | , | 34 | .012385 | .213665 | .081081 | .001961 | | | 35 | .012043 | .208389 | .078947 | .001864 | | | 36 | .011719 | .203366 | .076923 | .001775 | | | 37 | .011412 | .198578 | .075000 | .001692 | | | 38 | .011121 | .194010 | .073171 | .001615 | | | 39 | .010844 | .189646 | .071429 | .001542 | | | 40 | .010581 | .185474 | .069767 | .001475 | | | 41 | .010330 | .181481 | .068182 | .001412 | | | 42 | .010091 | .177656 | .066667 | .001353 | | | 43 | .009863 | .173988 | .065217 | .001297 | | | 44 | .009645 | .170469 | .063830 | .001245 | | | 45 | .009436 | .167088 | .062500 | .001196 | | | 46 | .009236 | .163839 | .061224 | .001150 | | | 47 | .009045 | .160713 | .060000 | .001106 | | | 48 | .008861 | .157704 | .058824 | .001065 | | | 49 | .008684 | .154805 | .057692 | .001026 | | | 50 | .008515 | .152011 | .056604 | .000989 | Table 11. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA = 4 AND BETA LESS THAN OR EQUAL TO 25 | <u>x</u> _ | <u>B</u> | P.lo | P.hi | Mean | <u>Var</u> | |------------|---------------------------------|---------|---------|---------|------------| | 1 | 1 | .421318 | .997491 | .800000 | .026667 | | 4 | 2 | .222072 | .967318 | .666667 | .031746 | | ļ | 2
3
4
5
6
7
8 | .173070 | .915270 | .571429 | .030612 | | } | 4 | .142270 | .857730 | .500000 | .027778 | | | 5 | .120950 | .801798 | .444444 | .024691 | | | 6 | .105262 | .749974 | .400000 | .021818 | | | 7 | .093214 | .702884 | .363636 | .019284 | | | 8 | .083660 | .660417 | .333333 | .017094 | | } | 9 | .075895 | .622193 | .307692 | .015216 | | } | 10 | .069455 | .587759 | .285714 | .013605 | | , | 11 | .064028 | .556669 | .266667 | .012222 | | | 12 | .059390 | .528514 | .250000 | .011029 | | | 13 | .055381 | .502936 | .235294 | .009996 | | | 14 | .051380 | .479621 | .222222 | .009097 | | | 15 | .048797 | .458298 | .210526 | .008310 | | | 16 | .046061 | .438734 | .200000 | .007619 | | | 17 | .043615 | .420729 | .190476 | .007009 | | | 18 | .041417 | .404110 | .181818 | .006468 | | | 19 | .039430 | .388727 | .173913 | .005986 | | | 20 | .037625 | .374451 | .166667 | .005556 | | | 21 | .035978 | .361170 | .160000 | .005169 | | | 22 | .034470 | .348784 | .153846 | .004821 | | | 23 | .033083 | .337208 | .148148 | .004507 | | | 24 | .031804 | .326367 | .142857 | .004222 | | | 25 | .030620 | .316193 | .137931 | .003964 | Table 12. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA = 4 AND BETA BETWEEN 25 AND 50 | <u>α</u> _ | <u>B</u> _ | <u>P.1o</u> | P.hi | Mean | <u>Var</u> | |------------|------------|-------------|---------|---------|------------| | 4 | 26 | .029521 | .306628 | .133333 | .003728 | | 4 | 27 | .028498 | .297619 | .129032 | .003512 | | 4 | 28 | .027544 | .289119 | .125000 | .003314 | | 4 | 29 | .026651 | .281088 | .121212 | .003133 | | 1 | 30 | .025815 | .273487 | .117647 | .002966 | | 1 | 31 | .025030 | .266283 | .114286 | .002812 | | 1 | 32 | .024291 | .259447 | .111111 | .002669 | | 4 | 33 | .023594 | .252951 | .108108 | .002537 | | 1 | 34 | .022936 | .246770 | .105263 | .002415 | | 1 | 35 | .022314 | .240882 | .102564 | .002301 | | ! | 36 | .021725 | .235267 | .100000 | .002195 | | } | 37 | .021166 | .229907 | .097561 | .002096 | | ļ | 38 | .020636 | .224784 | .095238 | .002004 | | ļ | 39 | .020131 | .219884 | .093023 | .001917 | | l | 40 | .019650 | .215192 | .090909 | .001837 | | ļ | 41 | .019192 | .210695 | .088889 | .001761 | | , | 42 | .018754 | .206381 | .086957 | .001689 | | į | 43 |
.018337 | .202240 | .085106 | .001622 | | ļ | 44 | .017937 | .198261 | .083333 | .001559 | | } | 45 | .017554 | .194436 | .081633 | .001499 | | ļ | 46 | .017188 | .190754 | .080000 | .001443 | | 1 | 47 | .016836 | .187209 | .078431 | .001390 | | 1 | 48 | .016499 | .183793 | .076923 | .001340 | | Ì | 49 | .016174 | .180499 | .075472 | .001292 | | | 50 | .015863 | .177321 | .074074 | .001247 | Table 13. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA ~ 5 AND BETA LESS THAN OR EQUAL TO 25 | <u>x</u> | ß | P.lo | P.hi | Mean | Var | |--|-----|---------|---------|---------|---------| | 5 | 1 | .690656 | .997992 | .833333 | .019841 | | 55
55
55
55
55
55
55
55
55
55
55
55
55 | 2 3 | .294314 | .973237 | .714286 | .025510 | | 5 | 3 | .236324 | .929196 | .625000 | .026042 | | 5 | 4 | .198202 | .879050 | .555556 | .024691 | | 5 | 5 | .170965 | .829035 | .500000 | .022727 | | 5 | 6 | .150443 | .781662 | .454545 | .020661 | | 5 | 7 | .134388 | .737798 | .416667 | .018697 | | 5 | 8 | .121467 | .697596 | .384615 | .016906 | | 5 | 9 | .110835 | .660900 | .357143 | .015306 | | ; | 10 | .101929 | .627435 | .333333 | .013889 | | ; | 11 | .094356 | .596893 | .312500 | .012638 | | ; | 12 | .087838 | .568971 | .294118 | .011534 | | | 13 | .082166 | .543388 | .277778 | .010559 | | ; | 14 | .077185 | .519890 | .263158 | .009695 | | | 15 | .072776 | .498252 | .250000 | .008929 | | ; | 16 | .068845 | .478276 | .238095 | .008246 | | | 17 | .065318 | .459787 | .227273 | .007636 | | ; | 18 | .062136 | .442633 | .217391 | .007089 | | ; | 19 | .059250 | .426681 | .208333 | .006597 | | ; | 20 | .056621 | .411812 | .200000 | .006154 | | ; | 21 | .054216 | .397923 | .192308 | .005753 | | 5 | 22 | .052008 | .384923 | .185185 | .005389 | | ; | 23 | .049972 | .372730 | .178571 | .005058 | | | 24 | .048090 | .361275 | .172414 | .004756 | | | 25 | .046345 | .350492 | .166667 | .004480 | Table 14. MEANS, VARIANCES AND 98% BOUNDS FOR A BETA DISTRIBUTION WITH ALPHA = 5 AND BETA BETWEEN 25 AND 50 | <u>x</u> | <u>B_</u> | P.lo | P.hi | <u>Mean</u> | <u>Var</u> | |---|-----------|---------|---------|-------------|------------| | 555555555555555555555555555555555555555 | 26 | .044722 | .340326 | .161290 | .004227 | | 5 | 27 | .043210 | .330727 | .156250 | .003995 | | 5 | 28 | .041796 | .321647 | .151515 | .003781 | | | 29 | .040472 | .313048 | .147059 | .003584 | | | 30 | .039229 | .304892 | .142857 | .003401 | | | 31 | .038061 | .297146 | .138889 | .003232 | | | 32 | .036960 | .289781 | .135135 | .003076 | | | 33 | .035921 | .282769 | .131579 | .002930 | | ; | 34 | .034939 | .276086 | .128205 | .002794 | | | 35 | .034009 | .269709 | .125000 | .002668 | | ; | 36 | .033128 | .263619 | .121951 | .002550 | | | 37 | .032291 | .257795 | .119048 | .002439 | | | 38 | .031495 | .252222 | .116279 | .002335 | | | 39 | .030738 | .246883 | .113636 | .002238 | | | 40 | .030016 | .241765 | .111111 | .002147 | | | 41 | .029328 | .236853 | .108696 | .002061 | | | 42 | .028670 | .232136 | .106383 | .001981 | | | 43 | .028041 | .227602 | .104167 | .001904 | | | 44 | .027439 | .223241 | .102041 | .001833 | | | 45 | .026863 | .219043 | .100000 | .001765 | | | 46 | .026310 | .215000 | .098039 | .001701 | | | 47 | .025779 | .211103 | .096154 | .001640 | | | 48 | .025270 | .207344 | .094340 | .001582 | | | 49 | .024780 | .203716 | .092593 | .001528 | | | 50 | .024309 | .200212 | .090909 | .001476 | #### APPENDIX B GRAPHS OF BOUNDS OF CONFIDENCE INTERVALS AND SIZE OF CONFIDENCE INTERVALS FOR VARIOUS BETA PRIOR DISTRIBUTION Figure 8 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=4$, $\beta=4$ Figure 9 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 4, β = 4 Figure 10 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=3$, $\beta=6$ Figure 11 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=3$, $\beta=6$ Figure 12 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 6, β = 3 Figure 13 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=6$, $\beta=3$ Figure 14 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 6$, $\beta = 6$ Figure 15 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=6$, $\beta=6$ Figure 16 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 4$, $\beta = 9$ Figure 17 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 4$, $\beta = 9$ Figure 18 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=9$, $\beta=4$ Figure 19 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 9, β = 4 Figure 20 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 6$, $\beta = 16$ Figure 21 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 6, β = 16 Figure 22 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 16$, $\beta = 6$ Figure 23 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 16$, $\beta = 6$ Figure 24 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 5, β = 20 Figure 25 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 5$, $\beta = 20$ Figure 26 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 20, β = 5 Figure 27 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 20$, $\beta = 5$ Figure 28 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 15, β = 15 Figure 29 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Eistribution Having Parameters α = 15, β = 15 Figure 30 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 5$, $\beta = 30$ Figure 31 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=5$, $\beta=30$ Figure 32 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 30, β = 5 Figure 33 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=30$, $\beta=5$ Figure 34 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=6$, $\beta=34$ Figure 35 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=6$, $\beta=34$ Figure 36 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=34$, $\beta=6$ Figure 37 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 34$, $\beta = 6$ Figure 38 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 5$, $\beta = 40$ Figure 39 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 5$, $\beta = 40$ Figure 40 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters α = 40, β = 5 Figure 41 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=40$, $\beta=5$ Figure 42 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 5$, $\beta = 50$ Figure 43 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha=5$, $\beta=50$ Figure 44 The Relation of Sample Size and the Bounds of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having Parameters $\alpha = 50$, $\beta = 5$ Figure 45 The Relation of Sample Size and the Size of the Bayesian 95% Confidence Interval with a Beta Prior Distribution Having
Parameters α = 50, β = 5 ## APPENDIX C. THE APL PROGRAM USED TO CONSTRUCT TABLES THAT DETERMINE PARAMETERS OF THE BETA PRIOR DISTRIBUTION ``` V SENSE A THIS PROGRAM CAN BE USED TO ESTABLISH BOUNDS FOR THE BETA B DISTRIBUTION. THE USER CAN BE ASSURED THAT 98 PERCENT OF THE B DENSITY OF THE BETA DISTRIBUTION IS BETWEEN P.LO AND P.HI FOR B EACH SET OF CORRESPONDING PARAMETERS. A MORE EXTENSIVE SET OF TABLES CAN BE CREATED BY INCREASING THE NUMBERS FOR THE MAX VALUE OF N IN LINE 22 AND THE MAX VALUE OF X IN LINE 24. [1] [2] [3] [4] [5] [6] K+0 LOOP1: K+K+1 O+' ALPHA +(K>5)/NEXT N+0 [8] BETA P.LO P.HI MEAN VARIANCE! [10] [11] N+0 [12] DDUMM+0 [13] +(DDUMM=0), [14] NEXT:N+1 [15] NEXT2:AL+R [16] LOOP2:N+N+1 [17] VNUM+N×K [18] VDEN1+(N+R) [19] VDEN2+N+R+1 [20] VDEN+VDEN1× [21] VAR+VNUM+VI [22] BE+N [23] AVE+R+(R+N) [24] PARA+AL,BE [25] PCT+PARA BG [26] OUTP+R,N,PC [27] 6 0 14 0 15 +(DDUMM=0)/NEXT2 NEXT:N+1 VNUM+N×K VDEN1+(N+K)*2 VDEN2+N+K+1 VDEN+VDEN1×VDEN2 VAR+VNUM+VDEN BE+N AVE+K+(K+N) PARA+AL,BE PCT+PARA BQUAN 0.01 0.99 OUTP+K,N,PCT,AVE,VAR 6 0 14 0 15 6 11 6 10 6 10 6 #OUTP +(N<25)/LOOP2 D+' ' [27] [28] [29] D+1 1 +(X<5)/LOOP1 [30] ``` #### APPENDIX D. THE APL PROGRAMS DESIGNED AT NAVAL POSTGRADUATE SCHOOL TO COMPUTE THE INVERSE CDF OF BETA DISTRIBUTION ``` V V+A BQUAN P; E:U;S:D;L;Z;DENS;I;PP;M;X;F;C2;C3;C4 A IMPLEMENTATION OF CARTER, 1947, BIOMETRIKA FOR APPROXIMATE INVERSE BETA 11/5/86 BEST FOR A[1]<2×A[2], AND SEEMS TO WORK FINE A 12/27/86 ADDED 2 NEWTON-RAPHSON ITERATIONS: ADD MORE FOR GREATER ACC. +((L/A)<1)/SMALL [1] [2] [4] E+NQUAN 1-P U+0 1+2×A S++/+U [5] [6] [7] D+-/+U L+(-3+E+2)+6 [8] [9] Z+((S+2)\times E\times (L+2+S)*0.5)-D\times (L+(5+6)-S+3)-(D*2)\times ((2+S)*0.5)\times E\times (11+E*2)+144 [10] [11] V++1+(+/\Phi A)\times *2\times Z\times I+1 [12] LOOP: DENS+A[1] × (A[1]! 1++/A) × (V*A[1]-1) × (1-V)*A[2]-1 [13] V+V-((A BETA V)-P)+DENS +((I+I+1)\leq 2)/LOOP [15] +0 [15] +0 [16] A MY VERSION FOR THE BETA QUANTILES WHEN ALB<1. 12/31/86 [17] A MODIFIED 1/1/87 WITH A CORNISH-FISHER TYPE EXPANSION. [18] A MODIFIED 1/3/87 TO USE MEAN AND STANDARD DEVIATION. AND NORMAL QUANTILE [19] A WHEN ONE PARAMETER IS GREATER THAN ONE (FOR ONE SIDE). OTHER SIDE (OR [20] A BOTH) USES THE DENSITY WHICH IS UNBOUNDED. FOLLOWED BY CORNISH-FISHER. [21] SMALL:V+X+(p,P)p0 PP+P < M+A[2]++/A [22] X[PP/i\rho X]+((PP/P)+((A[1]<1),A[1]\geq1)/1,A[1])*A[1]!^1++/A)*+A[1] X[(\sim PP)/i\rho X]+1-((1-(\sim PP)/P)+(((A[2]<1),A[2]\geq1)/1,A[2])*A[2]!^1++/A)*+A[2] [23] [24] [25] X[(X=1)/1pX]+1-1E [26] +(([/A)≥1)/ONB [27] START:F+(A[1]: 1++/A) xA[1] x (X*A[1]-1) x (1-X) *A[2]-1 C2+((1-A[1])+X)+(A[2]-1)+1-X [28] C3+(2\times C2\times 2)+((A[1]-1)+X\times 2)+(A[2]-1)+(1-X)\times 2 [29] [30] C^{4+}(6\times C^{2+3})+(7\times C^{2}\times (C^{3}-2\times C^{2+2}))+((1-A[1])+X*3)+(A[2]-1)+(1-X)*3 F+(P-(A BETA X))+F V+X+F+((C2×F+2)+2)+(C3×(F+3)+6)+C4×(F+4)+24 [31] [32] [33] V[(V>1)/i\rho V]+1 [34] +0 [35] ONE:M+1-M [36] S+(M\times(1-M)+1++/A)*0.5 [37] +((A_1\Gamma/A)=2)/4+DLC X[PP/10X]+M+S×NQUAN PP/P [38] X[(X \le 0)/1pX] + 18^{-15} [39] [40] +START [41] X[(\sim PP)/tpX]+M+S\times NQUAN(\sim PP)/P X[(X\geq 1)/1\rho X]+1-18^{-15} [42] [43] +START ``` ``` V Z+NQUAN P;A;B;C;D;Q;T;S;R;F V Z+NQUAN P:A;B:C:D:Q:I'S:K;F A IMPLEMENTS ALGORITHM AS 111 BY BEASLEY SPRINGER, APPLIED STAT, 1977 A FOR A VECTOR INPUT OF FRACTIONS, RETURNS CORRESPONDING NORMAL QUANTILES WITH CLAIMED ACCURACY BETTER THAN 1.5×10* 8. FOR GREATER ACCURACY, B ESPECIALLY FOR EXTREME P VALUES, ADD ONE OR MORE NEWTON-RAPHSON LOOPS. +(∨/(P≤0),(P≥1))/ERR +(∨/(|Q+,P-0.5)≤0.42))/3+□LC [1] [2] [3] [4] [5] [6] S+Z+.Q +EXT [7] [8] T+(0.42 \ge |Q)/Z+,Q [3] [10] [11] [12] [13] [14] [15] Z[(0.42 \ge |Q)/1p,Q]+T [16] [17] EXT:C+ D+ 3.54388924762 1.63706781897 S+(×S)×((R•.*0,₁3)+.×C)+1+(((R+(|⊕0.5-|S)*0.5)•.* 1 2)+.×D) [18] [19] Z[(0.42<|Q)/10Q]+S [20] [21] +0 [22] ERR: 'ONE OR MORE P VALUES ARE QUI OF RANGE.' \nabla BETA[0] VBETALUJ V U+A BETA X;Y;W;N;OD;EV;Z;I A 12/27/86 EVALUATES THE BETA CDF, PARAMETERS A, AT VECTOR X USING THE BOUVER-BARGMAN CONTINUED FRACTION AT DEPTH VARIING FROM 7 TO 21. A 11TH ANNUAL SYMPOSIUM ON THE INTERFACE OF COMPUTER SCIENCE AND STATISTICS, 1978, P 325. BECAUSE OF THE RANGE OF 1, +/A≤255. SEEMS TO GIVE A GOOD 8 OR MORE DECIMALS. Y+X≤(A[1]++/A) [1] [2] [3] [4] [5] [6] U+(p,X)p0 N+7++/([/A)>(2×14),10×110 +((+/Y)=0)/FLIP [7] [8] [9] W+Y/X+,X [10] OD+N \circ . \times ((1N) \times A[2] - 1N) + \times /(N,2) \rho A[1] + 12 \times I + N [11] [12] EV+-W \cdot ... (x+((2,N)p(A[1]+0,iN-1),(+/A)+0,iN-1))+x/(N,2)pA[1]+0,i(2xN-Z+1) [13] L:Z+1+EV[:I]+1+OD[:I]+Z [14] +((I+I-1)>0)/L [15] U[Y/ipU]+(+Z)x(A[1]!^{-1++/A})x(W*A[1])x(1-W)*A[2] [16] +((+/Y)=pX)/0 [17] FLIP: A+ ΦA W+1-(~Y)/X [18] [19] OD+W \circ . \times ((1N) \times A[2] - 1N) + \times /(N,2) \rho A[1] + 12 \times I + N [20] EV+-W \circ . \times (\times \neq ((2,N) \rho (A[1]+0,1N-1),(+/A)+0,1N-1)) + \times /(N,2) \rho A[1]+0,1(2 \times N-Z+1) [21] L1 : Z+1+EV[:I]+1+OD[:I]+Z [22] +((I+I-1)>0)/L1 U[(\sim Y)/10U]+1-(+Z)\times(A[1]!^1++/A)\times(W*A[1])\times(1-W)*A[2] [23] ``` #### APPENDIX E. THE APL PROGRAMS USED TO CONSTRUCT GRAPHS THAT DETERMINE SAMPLE SIZE NEEDED FOR A DESIRED CONFIDENCE INTERVAL SIZE ``` THIS PROGRAM COMPUTES THE PARAMETERS OF A BETA POSTERIOR DISTRIBUTION [1] A THIS PROGRAM COMPUTES THE PARAMETERS OF A BETA POSTERIOR DISTRIBUTION [2] A FOR A PARTICULAR BETA PRIOR DISTRIBUTION USING VARIOUS SAMPLE SIZES. [3] A IT PROVIDES A TABLE THAT FURNISHES THE SAMPLE SIZE USED TO CALCULATE [4] A THE PARAMETERS OF THE BETA POSTERIOR DISTRIBUTION (DENOTED BY N), THE [5] A PARAMETERS OF THE BETA POSTERIOR DISTRIBUTION (DENOTED BY N) AND B*), [6] A THE LOWER AND UPPER BOUNDS FOR A 95 PERCENT CONFIDENCE INTERVAL (DE- [7] A NOTED P.LO AND P.HI) AND THE SIZE OF THE COMFIDENCE INTERVAL CHARTPLUS [8] A USES SUBROUTINE INTER2 TO CALCULATE THE LOWER AND UPPER BOUNDS OF THE [9] A THE CONFIDENCE INTERVAL. CHARTPLUS USES SUBROUTINE CHARTER TO PERFORM [10] A THESE CALCULATIONS FOR SAMPLE SIZE NUMBERS AT OR NEAR 500 AND 1000. [11] A THIS PROGRAM ALSO PROVIDES A VECTOR OF SAMPLE SIZES (DENOTED SAMSZ), A [12] A VECTOR OF THE LOWER BOUNDS FOR EACH SAMPLE SIZE (DENOTED LEND), A VEC- [13] A TOR OF UPPER BOUNDS (DENOTED UBND), AND A VECTOR OF CONFIDENCE INTER- [14] A VAL SIZES (DENOTED INTV). THESE VECTORS CAN BE USED TO PRODUCE GRAPHS [15] A IN GRAFSTAT. V CHARTPLUS [15] A IN CRAFSTAT O+'ENTER PARAMETERS OF THE BETA PRIOR DISTRIBUTION' [16] [17] A+\Box [18] O+'ENTER VECTOR OF VARIOUS SAMPLE SIZES' C+0 [19] O+'ENTER X MATRIX' [20] [21] X+D [22] O+'ENTER Y MATRIX' [23] Y+0 [24] SD+0.01,0.99 [25] U+ THE VALUES OF ALPHA AND BETA PRIOR ARE! \Pi + A [26] U+'THE PRIOR BELIEF OF P.LOWER AND P.UPPER ARE' [27] [28] V+A BQUANT SD [29] □+V 0+1 [30] (I+1 [31] [32] U+! ! 0+1 1 [33] [34] U+! A \star R* P.LO P.HI CI SIZE' N [35] K+0 [36] R+oC SAMSZ+0 [37] INTV+0 [38] [39] LBND+0 [40] UBND+0 [41] LOOP: R+R+1 [42] DF+C[K] A INTER2 DE [43] [44] SAMSZ+SAMSZ,DF [45] INTV+INTV,CI ``` ``` LBND+LBND, PR2[1] [46] UBND+UBND, PR2[2] STUFF+DF, FY, PR2, CI 4 0 11 4 11 4 7 4 7 4 7 4 #STUFF [47] [48] [49] +(K<R)/LOOP [50] [51] X CHARTER Y SAMSZ+1+SAMSZ [52] INTV+1+INTV [53] [54] LBND+1+LBND [55] UBND+1+UBND □+1 [56] V B INTER2 N A THIS SUBROUTINE IS USED TO COMPUTE UPPER AND LOWER BOUNDS FOR A 95 A PERCENT CONFIDENCE INTERVAL. THE LEVEL OF CONFIDENCE CAN BE CHANGED BY USING DIFFERENT VALUES IN LINES 11 AND 14 OF THIS SUBROUTINE. FOR EXAMPLE IF WE DESIRED A 90 PERCENT CONFIDENCE INTERVAL WE COULD CHANGE 0.025 IN LINE 11 TO 0.05 AND CHANGE 0.975 IN LINE 14 TO 0.95. THIS WOULD RESULT IN THE LOWER AND UPPER BOUNDS FOR A 90 PERCENT CONFIDENCE INTERVAL. IN ADDITION, THIS SUBROUTINE CALCULATES THE VALUES OF ALPHA* AND BETA*, THE PARAMETERS FOR THE BETA POSTERIOR DISTRIBUTION. V B INTER2 N [1] [2] [4] [5] [6] [7] [8] A DISTRIBUTION. [9] [10] RY+B[1]+((B[1]+(B[1]+B[2]))\times N) QY+B[2]+((B[2]+(B[1]+B[2]))\times N) [11] FY+RY,QY [12] FY BQUAN 0.025 -13- [14] P1+V [15] +(P1≥1)/HOPE V+FY BQUAN 0.975 [16] [17] P2+V DUM+0 [18] [19] +(DUM=0)/HOP [20] HOPE:P1+0 [21] HOP:PR2+P1,P2 [22] CI+PR2[2]-PR2[1] V X CHARTER Y A THIS SUBROUTINE WAS DESIGNED TO WORK WITH A SOFTWARE PACKAGE A DEVELOPED BY DR. PETER W. ZEHNA OF THE NPS. IN ORDER TO USE THIS A SUBROUTINE THE USER MUST SELECT INTEGER VALUES OF SAMPLE SIZE N AT, A OR NEAR 500 AND 1000, SO THAT THE BETA POSTERIOR PARAMETERS ARE A ALSO INTEGERS. THESE PARAMETERS ARE CALCULATED IN THE FOLLOWING [1] [2] [3] [4] [5] A MANNER: [6] ALPHA* = ALPHA + ((ALPHA)+(ALPHA + BETA)) \times N BETA* = BETA + ((BETA)+(ALPHA + BETA)) \times N. [7] [8] Ω [9] A THEN THE USER MUST FIND THE CDF OF THE F-DISTRIBUTION AT 0.025 AND [10] A 0.975 USING 2 × ALPHA* AND 2 × BETA* DEGREES OF FREEDOM IN BOTH. [11] A CASES AND FOR EACH VALUE OF N. [12] A [13] A THE X VECTOR IS COMPRISED OF THE FOLLOWING ELEMENTS: [14] A X = (CDF OF F AT 0.025, CDF OF F AT 0.975, N AT, OR NEAR 500) [15] A (REMEMBER DEGREES OF FREEDOM ARE COMPUTED AT N NEAR 500) ``` ``` [16] A [17] A THE Y VECTOR IS COMPRISED OF THE FOLLOWING ELEMENTS: [18] A Y = (CDF OF F AT 0.025, CDF OF F AT 0.975, N AT, OR NEAR 1000) [19] A (REMEMBER DEGREES OF FREEDOM ARE COMPUTED AT N NEAR 1000) RM+X[3] [20] NM+A[1]+((A[1]+(A[1]+A[2]))×RM) KM+A[2]+((A[2]+(A[1]+A[2]))×RM) [21] [22] [23] TM+NM,KM [24] MC+X[1] [25] JC+NM×MC [26] SC+KM+JC [27] AB+JC+SC MCM+X[2] [28] [29] LM+NM×MCM [30] SM+KM+LM ASB+LM+SM [31] [32] AM+AB,ASB [33] AEM+ASB-AB SAMSZ+SAMSZ,RM [34] [35] INTV+INTV, AEM [36] LBND+LBND,AB [37] UBND+UBND, ASB POE+RM, TM, AM, AEM [38] 4 0 11 4 11 4 7 4 7 4 7 4 #POE [39] [40] RBM+Y[3] NCM+A[1]+((A[1]+(A[1]+A[2]))×RBM) KEM+A[2]+((A[2]+(A[1]+A[2]))×RBM) [41] [42] [43] MTM+NCM, KEM [44] MJC+Y[1] [45] JCC+NCM×MJC [46] SCC+KEM+JCC [47] ABM+JCC+SCC [48] MCM2+Y[2] [49] LAM+NCM×MCM2 [50] SMM+KEM+LAM [51] ASBM+LAM+SMM [52] MAM+ABM, ASBM [53] AEMS+ASBM-ABM [54] SAMSZ+SAMSZ,RBN INTV+INTV, AEMS [55] [56] LBND+LBND, ABM [57] UBND+UBND, ASBM [58] APOE+RBM, MTM, MAN, AEMS 4 0 11 4 11 4 7 4 7 4 7 4 #APOB [59] ``` ####
APPENDIX F. THE APL PROGRAMS USED TO DETERMINE SAMPLE SIZE FOR USERS WITHOUT GRAPHIC CAPABILITIES ``` V SCHARTS [1] A THIS PROGRAM IS USED TO DETERMINE AN INTERVAL WITHIN WHICH THE A EXACT SAMPLE SIZE FOR A DESIRED CONFIDENCE INTERVAL LIES. [2] D+'ENTER ALPHA AND BETA PARAMETERS' [3] [4] A + \Box [5] D+'ENTER VECTOR OF SAMPLE SIZES' C7+0 [6] SD+0.01,0.99 A BQUANT SD [7] [8] K+0 [9] [10] R+pC7 RK+0 [11] [12] LOOP: K+K+1 [13] KN+K-1 [14] M+K+1 DF+C7[K] [15] [16] A INTER2 DE [17] ALF+A[1] BAIT+A[2] [18] RK+RK,CI CIS+RK[M] [19] [20] [21] SIS+RK[2] +(SIS<0.2)/LINK [22] [23] ASTUFF+ALF, C7[K], FY, PR2, CI [24] →(CIS<0.15)/TTEND +(CIS≤0.2)/OUTS [25] [26] +(K<R)/LOOP +(CIS>0.2)/TTEND [27] [28] OUTS: BOZO+0 D+'LIMITS FOR 0.20' [29] O+'ALPHA BETA N CI SIZE' [30] STUFF1+ALF, BAIT, C7 [KN], RK[K] [31] [32] STUFF+ALF, BAIT, C7[K], RK[M] [33] AOUTS: 9 4 11 4 11 4 7 4 7 4 8 5 #STUFF 3 0 5 0 6 0 10 5 #STUFF1 [34] [35] 3 0 5 0 6 0 10 5 STUFF FUN+0 [36] [37] +(FUN<1)/POOP [38] LINK: [+'SORRY NO GO FOR 0.20' +(SIS<0.15)/FOOT [39] [40] POOP: K+K+1 DF+C7[K] [41] [42] KN+K-1 [43] M+K+1 [44] A INTER2 DF RK+RK,CI [45] [46] CIS+RK[M] [47] +(CIS≤0.15)/OUTP ``` ``` [48] +(K<R)/POOP [49] FOOT: U+'SORRY NO GO FOR 0.15' [50] CUM+0 [51] +(GUM=0)/TEND [52] TTEND: 0+'SORRY NO GO ON THIS ONE FOR 0.20 OR 0.15' [53] DUM+0 +(DUM=0)/TEND [54] [55] OUTP:BOZO+0 [56] U+'LIMITS FOR 0.15' O+'ALPHA BETA N [57] CI SIZE' STUFF+ALF, BAIT, C7 [KN], RK[K] 3 0 5 0 6 0 10 5 #STUFF [58] [59] STUFF1+ALF, BAIT, C7[K], RK[M] [60] 3 0 5 0 6 0 10 5 #$TUFF1 [61] [62] TEND: 0+ PROGRAM COMPLETE ∇ CHARTS A THIS PROGRAM PROVIDES AN ABRIDGED VERSION OF CHARTPLUS AND IS [1] A CAPABLE OF COMPUTING CONFIDENCE INTERVAL SIZES FOR CONTINUOUS A VALUES OF N (NUMBER OF SAMPLES REQUIRED) [2] [3] O+'ENTER VALUES OF ALPHA AND BETA PARAMETERS' [4] [5] A + \Box O+ ENTER NEW SAMPLE SIZE VECTOR, MUST ENTER AT LEAST 2 NUMBERS' [6] [7] +1 [8] A \star B* P.LO P.HI CI SIZE' [9] K+0 [10] R+pC7 [11] LOOP: K+K+1 [12] DF+C7[K] A INTER2 DF [13] STUFF+DF,FY,PR2,CI 9 4 11 4 11 4 7 4 7 4 8 5 $STUFF [14] [15] +(K<R)/LOOP [16] ``` ### APPENDIX G. THE APL PROGRAMS USED TO FIND SAMPLE SIZE FOR DIFFERENT BETA PRIOR DISTRIBUTIONS WITH THE SAME MEANS ``` V SMEAN A THIS PROGRAM ALLOWS ONE TO CALCULATE THE POINTS NECESSARY TO PLOT A LINE THAT CAN BE USED TO DETERMINE THE REQUIRED NUMBER OF SAMPLES A THAT ATTAIN A DESIRED CONFIDENCE INTERVAL SIZE FOR BETA PRIOR DIS- A TRIBUTIONS WITH THE SAME MEANS. TO USE THIS PROGRAM THE USER MUST A KNOW THE REQUIRED SAMPLE SIZE FOR AT LEAST ONE SET OF PARAMETERS. (1+'INPUT ALPHA AND BETA' [1] [2] [4] [5] [6] [7] A1A2+0 G+'INPUT THE NUMBER OF SAMPLES NEEDED TO ATTAIN THE DESIRED INTERVAL SIZE [8] [9] SNUM+0 EV+A1A2[1]+(A1A2[1]+A1A2[2]) XINT+A1A2[1]+(SNUM×EV) NUMPR+SNUM+((A1A2[1]-1)+EV) [10] [11] [12] [13] NSLOP+NUMPR [14] DSLOP+1-XINT SLOPE+NSLOP+DSLOP NSLOPE+ 1×SLOPE [16] [17] IS ', (WNUMPR) [18] [19] V V GENERAL [1] a this program can be used to determine a required sample size for a [2] [3] [4] [5] [6] A BETA PRIOR DISTRIBUTION THAT HAS THE SAME MEAN AS A SECOND A BETA PRIOR DISTRIBUTION BUT HAS DIFFERENT PARAMETERS. TO USE THIS A PROGRAM THE USER MUST KNOW THE REQUIRED SAMPLE SIZE FOR THE SECOND A BETA DISTRIBUTION. O+'INPUT ORIGINAL AND SECOND ALPHAS' A1A2+0 U+'INPUT NUMBER OF SAMPLES REQUIRED FOR ORIGINAL ALPHA' [8] [9] [10] Q+'INPUT THE MEAN (SHOULD BE THE SAME FOR BOTH ALPHAS)' [11] EV+0 [12] NSAM+N+((A1A2[1]-A1A2[2])+BV) 11 5 THEAN ``` ## APPENDIX H. TABLES SHOWING EFFECT OF SAMPLE SIZE WHEN THE NUMBER OF SUCCESSES K = (THE MEAN OF THE BETA PRIOR) TIMES (THE NUMBER OF TRIALS) Table 15. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 4, BETA = 4) | 0 4 3 4 3 4 | - | | | | | |-------------|-------------|----------|--------|-------|---------| | SAMPLE | | | LOWER | UPPER | DESIRED | | SIZE n | <u>a * </u> | <u> </u> | BOUND_ | BOUND | SIZE 2A | | i | 4.5000 | 4.5000 | .1990 | .8010 | .6021 | | 5 | 6.5000 | 6.5000 | .2430 | .7570 | .5140 | | 10 | 9.0000 | 9.0000 | .2781 | .7219 | .4438 | | 15 | 11.5000 | 11.5000 | .3020 | .6980 | .3961 | | 20 | 14.0000 | 14.0000 | .3195 | .6805 | .3610 | | 30 | 19.0000 | 19.0000 | .3440 | .6560 | .3120 | | 40 | 24.0000 | 24.0000 | .3606 | .6394 | .2787 | | 50 | 29.0000 | 29.0000 | .3729 | .6271 | .2542 | | 60 | 34.0000 | 34.0000 | .3824 | .6176 | .2352 | | 70 | 39.0000 | 39.0000 | .3900 | .6100 | .2199 | | 80 | 44.0000 | 44.0000 | .3964 | .6036 | .2072 | | 90 | 49.0000 | 49.0000 | .4017 | .5983 | .1966 | | 100 | 54.0000 | 54.0000 | .4063 | .5937 | .1874 | | 110 | 59.0000 | 59.0000 | .4103 | .5897 | .1793 | | 120 | 64.0000 | 64.0000 | .4139 | .5861 | .1723 | | 130 | 69.0000 | 69.0000 | .4170 | .5830 | .1660 | | 140 | 74.0000 | 74.0000 | .4198 | .5802 | .1603 | | 150 | 79.0000 | 79.0000 | .4224 | .5776 | .1552 | | 160 | 84.0000 | 84.0000 | .4247 | .5753 | .1506 | | 170 | 89.0000 | 89.0000 | .4268 | .5732 | .1463 | | 180 | 94.0000 | 94.0000 | .4288 | .5712 | .1424 | | 190 | 99.0000 | 99.0000 | .4306 | .5694 | .1388 | | 200 | 104.0000 | 104.0000 | .4323 | .5677 | .1354 | | 504 | 256.0000 | 256.0000 | .4568 | .5433 | .0865 | | 1000 | 504.0000 | 504.0000 | .4692 | .5308 | .0617 | Table 16. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 3, BETA = 6) | SAMPLE | ; | | LOWER | UPPER | DESIRED | |----------------------------|-------------|------------|-------|-------|---------| | SIZE n | <u>α. ◆</u> | <u>β *</u> | BOUND | BOUND | | | 1 | 3.3333 | 6.6667 | .0940 | .6353 | .5412 | | | 3.6667 | 7.3333 | .1020 | .6217 | .5197 | | i | 4.0000 | 8.0000 | .1093 | .6097 | .5005 | | Ĭ | 4.3333 | 8.6667 | .1159 | .5991 | .4832 | | 1 3 | 4.6667 | 9.3333 | .1220 | .5896 | .4676 | | 1 6 | 5.0000 | 10.0000 | .1276 | .5810 | .4534 | | 2
3
4
5
6
7 | 5.3333 | 10.6667 | .1328 | .5732 | .4404 | | 8 | 5.6667 | 11.3333 | .1376 | .5661 | .4285 | | 9 | 6.0000 | 12.0000 | .1421 | .5596 | .4175 | | 10 | 6.3333 | 12.6667 | .1463 | .5536 | .4073 | | 15 | 8.0000 | 16.0000 | .1638 | .5292 | .3654 | | 20 | 9.6667 | 19.3333 | .1771 | .5114 | .3343 | | 25 | 11.3333 | 22.6667 | .1877 | .4976 | .3099 | | 30 | 13.0000 | 26.0000 | .1963 | .4865 | .2902 | | 35 | 14.6667 | 29.3333 | .2036 | .4774 | .2738 | | 40 | 16.3333 | 32.6667 | .2098 | .4697 | .2599 | | 45 | 18.0000 | 36.0000 | .2152 | .4632 | .2480 | | 50 | 19.6667 | 39.3333 | .2199 | .4574 | .2375 | | 55 | 21.3333 | 42.6667 | .2241 | .4524 | .2283 | | 60 | 23.0000 | 46.0000 | .2279 | .4479 | .2200 | | 65 | 24.6667 | 49.3333 | .2313 | .4439 | .2126 | | 70 | 26.3333 | 52.6667 | .2344 | .4403 | .2059 | | 75 | 28.0000 | 56.0000 | .2372 | .4370 | .1998 | | 80 | 29.6667 | 59.3333 | .2398 | .4340 | .1942 | | 90 | 33.0000 | 66.0000 | .2444 | .4287 | .1843 | | 100 | 36.3333 | 72.6667 | .2483 | .4241 | .1758 | | 110 | 39.6667 | 79.3333 | .2518 | .4201 | .1683 | | 120 | 43.0000 | 86.0000 | .2549 | .4167 | .1617 | | 130 | 46.3333 | 92.6667 | .2577 | .4135 | .1559 | | 140 | 49.6667 | 99.3333 | .2601 | .4108 | .1506 | | 150 | 53.0000 | 106.0000 | .2624 | .4082 | .1459 | | 160 | 56.3333 | 112.6667 | .2644 | .4060 | .1415 | | 504 | 171.0000 | 342.0000 | .2932 | .3747 | .0815 | | 900 | 303.0000 | 606.0000 | .3031 | .3643 | .0612 | | L | | | | | | Table 17. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA = 3) | <i></i> | 31 | | | | |----------------------------|------------|------------|----------------|--------------------------------| | SAMPLE
SIZE n | <u>a *</u> | <u>β *</u> | LOWER
Bound | UPPER DESIRED
BOUND SIZE 2A | | 1 | 6.6667 | 3.3333 | .3647 | .9060 .5412 | | | 7.3333 | 3.6667 | .3783 | .8980 .5197 | | 1 3 | 8.0000 | 4.0000 | .3903 | .8907 .5005 | | 1 4 | 8.6667 | 4.3333 | .4009 | .8841 .4832 | | 2
3
4
5
6
7 | 9.3333 | 4.6667 | .4104 | .8780 .4676 | | 6 | 10,0000 | 5.0000 | .4190 | .8724 .4534 | | 7 | 10.6667 | 5.3333 | .4268 | .8672 .4404 | | 8 | 11.3333 | 5.6667 | .4339 | .8624 .4285 | | 9 | 12.0000 | 6.0000 | .4404 | .8579 .4175 | | 10 | 12.6667 | 6.3333 | .4464 | .8537 .4073 | | 15 | 16.0000 | 8.0000 | .4708 | .8362 .3654 | | 20 | 19.3333 | 9.6667 | .4886 | .8229 .3343 | | 25 | 22.6667 | 11.3333 | .5024 | .8123 .3099 | | 30 | 26.0000 | 13.0000 | .5135 | .8037 .2902 | | 35 | 29.3333 | 14.6667 | .5226 | .7964 .2738 | | 40 | 32.6667 | 16.3333 | .5303 | .7902 .2599 | | 45 | 36.0000 | 18.0000 | .5368 | .7848 .2480 | | 50 | 39.3333 | 19.6667 | .5426 | .7801 .2375 | | 55 | 42.6667 | 21.3333 | .5476 | .7759 .2283 | | 60 | 46.0000 | 23.0000 | .5521 | .7721 .2200 | | 65 | 49,3333 | 24.6667 | .5561 | .7687 .2126 | | 70 | 52.6667 | 26.3333 | .5597 | .7656 .2059 | | 75 | 56.0000 | 23.0000 | .5630 | .7628 .1998 | | 80 | 59.3333 | 29.6667 | .5660 | .7602 .1942 | | 90 | 66.0000 | 33.0000 | .5713 | .7556 .1843 | | 100 | 72.6667 | 36.3333 | .5759 | .7517 .1758 | | 110 | 79.3333 | 39.6667 | .5799 | .7482 .1683 | | 120 | 86.0000 | 43.0000 | .5833 | .7451 .1617 | | 130 | 92.6667 | 46.3333 | .5865 | .7423 .1559 | | 140 | 99.3333 | 49.6667 | .5892 | .7399 .1506 | | 150 | 106.0000 | 53.0000 | .5918 | .7376 .1459 | | 160 | 112.6667 | 56.3333 | .5940 | .7356 .1415 | | 504 | 342.0000 | 171.0000 | .6253 | .7068 .0815 | | 900 | 606.0000 | 303.0000 | .6357 | .6969 .0612 | Table 18. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA = 6) | | 0) | | | | |----------------------------|------------|---------------|----------------|-----------------------------| | SAMPLE
SIZE n | <u>α *</u> | <u>β</u> * | LOWER
BOUND | UPPER DESIRED BOUND SIZE 2A | | 1 | | _ | | | | 1 | 6.5000 | 6.5000 | .2430 | .7570 .5140 | | 2
3
4
5
6
7 | 7.0000 | 7.0000 | .2513 | .7487 .4973 | | 3 | 7.5000 | 7.5000 | .2589 | .7411 .4821 | | 1 + | 8.0000 | 8.0000 | .2659 | .7341 .4683 | |) 5 | 8.5000 | 8.5000 | .2722 | .7278 .4555 | | 0 | 9.0000 | 9.0000 | .2781 | .7219 .4438 | | / | 9.5000 | 9.5000 | .2836 | .7164 .4329 |
 8 | 10.0000 | 10.0000 | .2886 | .7114 .4227 | | 9 | 10.5000 | 10.5000 | .2934 | .7066 .4132 | | 10 | 11.0000 | 11.0000 | .2978 | .7022 .4044 | | 15 | 13.5000 | 13.5000 | .3164 | .6836 .3673 | | 20 | 16.0000 | 16.0000 | .3306 | .6694 .3388 | | 25 | 18.5000 | 18.5000 | .3420 | .6580 .3160 | | 30 | 21.0000 | 21.0000 | .3513 | .6487 .2973 | | 35 | 23.5000 | 23.5000 | .3592 | .6408 .2816 | | 40 | 26.0000 | 26.0000 | .3660 | .6340 .2681 | | 45 | 28.5000 | 28.5000 | .3718 | .6282 .2564 | | 50 | 31.0000 | 31.0000 | .3770 | .6230 .2461 | | 55 | 33.5000 | 33.5000 | .3815 | .6185 .2369 | | 60 | 36.0000 | 36.0000 | .3856 | .6144 .2287 | | 65 | 38.5000 | 38.5000 | .3894 | .6106 .2213 | | 70 | 41.0000 | 41.0000 | .3927 | .6073 .2146 | | 75 | 43.5000 | 43.5000 | .3958 | .6042 .2084 | | 80 | 46.0000 | 46.0000 | .3986 | .6014 .2028 | | 85 | 48.5000 | 48.5000 | .4012 | .5988 .1975 | | 90 | 51.0000 | 51.0000 | .4036 | .5964 .1927 | | 100 | 56.0000 | 56.0000 | .4080 | .5920 .1840 | | 110 | 61.0000 | 61.0000 | .4118 | .5882 .1764 | | 120 | 66.0000 | 66.0000 | .4152 | .5848 .1697 | | 130 | 71.0000 | 71.0000 | .4182 | .5818 .1637 | | 140 | 76.0000 | 76.0000 | .4209 | .5791 .1582 | | 150 | 81.0000 | 81.0000 | .4233 | .5767 .1533 | | 160 | 86.0000 | 86.0000 | .4256 | .5744 .1488 | | 170 | 91.0000 | 91.0000 | .4276 | .5724 .1447 | | 180 | 96.0000 | 96.0000 | .4295 | .5705 .1409 | | 190 | 101.0000 | 101.0000 | .4313 | .5687 .1374 | | 200 | 106.0000 | 106.0000 | .4329 | .5671 .1342 | | 504 | 258.0000 | 258.0000 | .4569 | .5431 .0862 | | 1008 | 510.0000 | 510.0000 | .4693 | .5307 .0613 | | L | | | | | Table 19. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 4, BETA = 9) | | 9) | | | | |----------------------------|----------|----------|----------------|-----------------------------| | SAMPLE
SIZE n | α* | ß * | LOWER
BOUND | UPPER DESIRED BOUND SIZE 2A | | 1 | 4.3077 | 9.6923 | .1049 | .5623 .4574 | | | 4.6154 | 10.3846 | .1101 | .5536 .4435 | | 3 | 4.9231 | 11.0769 | .1150 | .5458 .4308 | | 4 | 5.2308 | 11.7692 | .1195 | .5386 .4192 | | 5 | 5.5385 | 12.4615 | .1237 | .5321 .4084 | | 2
3
4
5
6
7 | 5.8462 | 13.1538 | .1276 | .5260 .3984 | | 7 | 6.1538 | 13.8462 | .1313 | .5204 .3891 | | 8 | 6.4615 | 14.5385 | .1348 | .5152 .3805 | | 9 | 6.7692 | 15.2308 | .1380 | .5104 .3723 | | 10 | 7.0769 | 15.9231 | .1411 | .5059 .3647 | | 15 | 8.6154 | 19.3846 | .1544 | .4870 .3326 | | 20 | 10.1538 | 22.8462 | .1649 | .4725 .3076 | | 25 | 11.6923 | 26.3077 | .1735 | .4611 .2876 | | 30 | 13.2308 | 29.7692 | .1807 | .4516 .2710 | | 35 | 14.7692 | 33.2308 | .1868 | .4438 .2570 | | 40 | 16.3077 | 36.6923 | .1921 | .4370 .2449 | | 45 | 17.8462 | 40.1538 | .1968 | .4312 .2344 | | 50 | 19.3846 | 43.6154 | .2009 | .4261 .2252 | | 55 | 20.9231 | 47.0769 | .2046 | .4215 .2169 | | 60 | 22.4615 | 50.5385 | .2079 | .4174 .2095 | | 65 | 24.0000 | 54.0000 | .2109 | .4138 .2028 | | 70 | 25.5385 | 57.4615 | .2137 | .4105 .1967 | | 75 | 27.0769 | 60.9231 | .2162 | .4074 .1912 | | 80 | 28.6154 | 64.3846 | .2186 | .4046 .1861 | | 90 | 31.6923 | 71.3077 | .2228 | .3997 .1769 | | 100 | 34.7692 | 78.2308 | .2264 | .3954 .1690 | | 110 | 37.8462 | 85.1538 | .2296 | .3917 .1621 | | 120 | 40.9231 | 92.0769 | .2324 | .3884 .1560 | | 130 | 44.0000 | 99.0000 | .2350 | .3855 .1505 | | 140 | 47.0769 | 105.9231 | .2373 | .3828 .1455 | | 150 | 50.1538 | 112.8462 | .2394 | .3804 .1410 | | 160 | 53.2308 | 119.7692 | .2413 | .3783 .1369 | | 170 | 56.3077 | 126.6923 | .2431 | .3763 .1332 | | 507 | 160.0000 | 360.0000 | .2688 | .3480 .0792 | | 910 | 284.0000 | 639.0000 | .2783 | .3378 .0595 | Table 20. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 9, BETA = 4) | · | 4) | | | | |------------------|-------------|----------|----------------|-----------------------------| | SAMPLE
SIZE n | <u>α.</u> * | β* | LOWER
BOUND | UPPER DESIRED BOUND SIZE 2A | | | | | | | | 1 | 9.6923 | 4.3077 | .4377 | .8951 .4574 | | 2
3
4
5 | 10.3846 | 4.6154 | .4464 | .8899 .4435 | | 3 | 11.0769 | 4.9231 | .4542 | .8850 .4308 | | 4 | 11.7692 | 5.2308 | .4614 | .8805 .4192 | | 5 | 12.4615 | 5.5385 | .4679 | .8763 .4084 | | 6 | 13.1538 | 5.8462 | .4740 | .8724 .3984 | | 7
8
9 | 13.8462 | 6.1538 | .4796 | .8687 .3891 | | 8 | 14.5385 | 6.4615 | .4848 | .8652 .3805 | | | 15.2308 | 6.7692 | .4896 | .8620 .3723 | | 10 | 15.9231 | 7.0769 | .4941 | .8589 .3647 | | 15 | 19.3846 | 8.6154 | .5130 | .8456 .3326 | | 20 | 22.8462 | 10.1538 | .5275 | .8351 .3076 | | 25 | 26.3077 | 11.6923 | .5389 | .8265 .2876 | | 30 | 29.7692 | 13.2308 | .5484 | .8193 .2710 | | 35 | 33.2308 | 14.7692 | .5562 | .8132 .2570 | | 40 | 36.6923 | 16.3077 | .5630 | .8079 .2449 | | 45 | 40.1538 | 17.8462 | .5688 | .8032 .2344 | | 50 | 43.6154 | 19.3846 | .5739 | .7991 .2252 | | 55 | 47.0769 | 20.9231 | .5785 | .7954 .2169 | | 60 | 50.5385 | 22.4615 | .5826 | .7921 .2095 | | 65 | 54.0000 | 24.0000 | .5862 | .7891 .2028 | | 70 | 57.4615 | 25.5385 | .5895 | .7863 .1967 | | 75 | 60.9231 | 27.0769 | .5926 | .7838 .1912 | | 80 | 64.3846 | 28.6154 | .5954 | .7814 .1861 | | 90 | 71.3077 | 31.6923 | .6003 | .7772 .1769 | | 100 | 78.2308 | 34.7692 | .6046 | .7736 .1690 | | 110 | 85.1538 | 37.8462 | .6083 | .7704 .1621 | | 120 | 92.0769 | 40.9231 | .6116 | .7676 .1560 | | 130 | 99.0000 | 44.0000 | .6145 | .7650 .1505 | | 140 | 105.9231 | 47.0769 | .6172 | .7627 .1455 | | 150 | 112.8462 | 50.1538 | .6196 | .7606 .1410 | | 160 | 119.7692 | 53.2308 | .6217 | .7587 .1369 | | 170 | 126.6923 | 56.3077 | .6237 | .7569 .1332 | | 507 | 360.0000 | 160.0000 | .6520 | .7312 .0792 | | 910 | 639.0000 | 284.0000 | .6622 | .7217 .0595 | | | | | | | Table 21. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA = 16) | | 16) | | | | | |--------------------------------------|----------|------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | α * | <u>B</u> * | LOWER
BOUND | UPPER
Bound | DESIRED
SIZE 2A | | 1 | 6.2727 | 16.7273 | .1156 | .4672 | .3515 | | <u> </u> | 6.5455 | 17.4545 | .1183 | .4629 | .3446 | |] 3 | 6.8182 | 18.1818 | .1208 | .4590 | .3381 | | 1 4 | 7.0909 | 18.9091 | .1233 | .4552 | .3320 | | 5 | 7.3636 | 19.6364 | .1256 | .4517 | .3261 | | 6 | 7.6364 | 20.3636 | .1278 | .4484 | .3206 | | 2
3
4
5
6
7
8
9 | 7.9091 | 21.0909 | .1299 | .4452 | .3153 | | 8 | 8.1818 | 21.8182 | .1319 | .4422 | .3103 | | | 8.4545 | 22.5455 | .1338 | .4394 | .3055 | | 10 | 8.7273 | 23.2727 | .1357 | .4366 | .3010 | | 15 | 10.0909 | 26.9091 | .1439 | .4248 | .2808 | | 20 | 11.4545 | 30.5455 | .1508 | .4151 | .2643 | | 25 | 12.8182 | 34.1818 | .1567 | .4070 | .2503 | | 30 | 14.1818 | 37.8182 | .1618 | .4002 | .2384 | | 35 | 15.5455 | 41.4545 | .1663 | .3943 | .2280 | | 40 | 16.9091 | 45.0909 | .1702 | .3891 | .2189 | | 45 | 18.2727 | 48.7273 | .1738 | .3845 | .2107 | | 50 | 19.6364 | 52.3636 | .1770 | .3804 | .2035 | | 55 | 21.0000 | 56.0000 | .1799 | .3768 | .1969 | | 60 | 22.3636 | 59.6364 | .1825 | .3734 | .1909 | | 65 | 23.7273 | 63.2727 | .1849 | .3704 | .1854 | | 70 | 25.0909 | 66.9091 | .1872 | .3676 | .1804 | | 75 | 26.4545 | 70.5455 | .1893 | .3651 | .1758 | | 80 | 27.8182 | 74.1818 | .1912 | .3627 | .1715 | | 90 | 30.5455 | 81.4545 | .1947 | .3585 | .1638 | | 100 | 33.2727 | 88.7273 | .1977 | .3548 | .1570 | | 110 | 36.0000 | 96.0000 | .2005 | .3515 | .1510 | | 120 | 38.7273 | 103.2727 | .2029 | .3486 | .1457 | | 130 | 41.4545 | 110.5455 | .2051 | .3460 | .1409 | | 140 | 44.1818 | 117.8182 | .2071 | .3436 | .1365 | | 150 | 46.9091 | 125.0909 | .2090 | .3415 | .1325 | | 160 | 49.6364 | 132.3636 | .2107 | .3395 | .1288 | | 170 | 52.3636 | 139.6364 | .2122 | .3377 | .1255 | | 180 | 55.0909 | 146.9091 | .2137 | .3360 | .1223 | | 506 | 144.0000 | 384.0000 | .2356 | .3115 | .0759 | | 1012 | 282.0000 | 752.0000 | .2460 | .3003 | .0542 | | | | | | | | Table 22. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 16, BETA = 6) | | 6) | | | | | |------------------|-----------------|------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | α* | <u>β</u> * | LOWER
BOUND | UPPER
Bound | DESTRED
SIZE 2A | | 1 | 16.7273 | 6.2727 | .5328 | .8844 | .3515 | | | 17.4545 | 6.5455 | .5371 | .8817 | .3446 | | 3 | 18.1318 | 6.8182 | .5410 | .8792 | .3381 | | 4 | 18.9091 | 7.0909 | .5448 | .8767 | .3320 | | 2
3
4
5 | 19.6364 | 7.3636 | .5483 | .8744 | .3261 | | 6 7 | 20.3636 | 7.6364 | .5516 | .8722 | .3206 | | 7 | 21.0909 | 7.9091 | .5548 | .8701 | .3153 | | 8 9 | 21.8182 | 8.1818 | .5578 | .8681 | .3103 | | | 22.5455 | 8.4545 | .5606 | .8662 | .3055 | | 10 | 23.2727 | 8.7273 | .5634 | .8643 | .3010 | | 15 | 26.9091 | 10.0909 | .5752 | .8561 | .2808 | | 20 | 30.5455 | 11.4545 | .5849 | .8492 | .2643 | | 25 | 34.1818 | 12.8182 | .5930 | .8433 | .2503 | | 30 | 37.8182 | 14.1818 | .5998 | .8382 | .2384 | | 35 | 41.4545 | 15.5455 | .6057 | .8337 | .2280 | | 40 | 45.0909 | 16.9091 | .6109 | .8298 | .2189 | | 45 | 48.7273 | 18.2727 | .6155 | .8262 | .2107 | | 50 | 52.3636 | 19.6364 | .6196 | .8230 | .2035 | | 55 | 56.0000 | 21.0000 | .6232 | .8201 | .1969 | | 60 | 59.6364 | 22.3636 | .6266 | .8175 | .1909 | | 65 | 63.2727 | 23.7273 | .6296 | .8151 | .1854 | | 70 | 66.9091 | 25.0909 | .6324 | .8128 | .1804 | | 75 | 70.5455 | 26.4545 | .6349 | .8107 | .1758 | | 80 | 74.181 8 | 27.8182 | .6373 | .8088 | .1715 | | 90 | 81.4545 | 30.5455 | .6415 | .8053 | .1638 | | 100 | 88.7273 | 33.2727 | .6452 | .8023 | .1570 | | 110 | 96.0000 | 36.0000 | .6485 | .7995 | .1510 | | 120 | 103.2727 | 38.7273 | .6514 | .7971 | .1457 | | 130 | 110.5455 | 41.4545 | .6540 | .7949 | .1409 | | 140 | 117.8182 | 44.1818 | .6564 | .7929 | .1365 | | 150 | 125.0909 | 46.9091 | .6585 | .7910 | .1325 | | 160 | 132.3636 | 49.6364 | .6605 | .7893 | .1288 | | 170 | 139.6364 | 52.3636 | .6623 | .7878 | .1255 | | 180 |
146.9091 | 55.0909 | .6640 | .7863 | .1223 | | 506 | 384.0000 | 144.0000 | .6885 | .7644 | .0759 | | 1012 | 752.0000 | 282.0000 | .6997 | .7540 | .0542 | Table 23. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 5, BETA = 20) | | 20) | | | | | |-------------|--------------------|--------------------|----------------|---------------|---| | SAMPLE | | | LOWER | UPPER DESIRED |) | | SIZE n | <u>α *</u> | <u>β</u> * | BOUND | BOUND SIZE 2A | | | 1 | 5.2000 | 20.8000 | .0732 | | | | | | | | | | | 2 3 | 5.4000 | 21.6000 | .0750 | .3669 .2919 | | | 3 | 5.6000 | 22.4000 | .0767 | .3637 .2869 | | | 4
5
6 | 5.8000 | 23.2000 | .0784 | .3606 .2823 | | |) 2 | 6.0000 | 24.0000 | .0799 | .3577 .2778 | | | 7 | 6.2000 | 24.8000 | .0815 | .3550 .2736 | | | 8 | 6.4000 | 25.6000 | .0829 | .3524 .2695 | | | 8 9 | 6.6000 | 26.4000
27.2000 | .0843 | .3499 .2656 | | | | 6.8000 | 27.2000 | .0857 | .3476 .2619 | | | 10 | 7.0000 | 28.0000 | .0870 | .3453 .2583 | | | 15
20 | 8.0000 | 32.0000 | .0930 | .3353 .2424 | | | | 9.0000 | 36.0000 | .0980 | .3271 .2291 | | | 25
30 | 10.0000
11.0000 | 40,0000
44,0000 | .1024
.1063 | .3202 .2178 | | | | | | | .3143 .2080 | | | 35
40 | 12.0000 | 48.0000 | .1098 | .3091 .1994 | | | | 13.0000 | 52.0000 | .1128 | .3046 .1918 | | | 45 | 14.0000 | 56.0000 | .1156 | .3006 .1850 | | | 50 | 15.0000 | 60.0000 | .1181 | .2970 .1789 | | | 55 | 16.0000 | 64.0000 | .1204 | .2938 .1733 | | | 60 | 17.0000 | 68.0000 | .1225 | .2908 .1683 | | | 65 | 18.0000 | 72.0000 | .1245 | .2881 .1636 | | | 70 | 19.0000 | 76.0000 | .1263 | .2856 .1593 | | | 75 | 20.0000 | 80.0000 | .1280 | .2834 .1554 | | | 80 | 21.0000 | 84.0000 | .1296 | .2813 .1517 | | | 85 | 22.0000 | 88.0000 | .1310 | .2793 .1483 | | | 90 | 23.0000 | 92.0000 | .1324 | .2775 .1451 | | | 100 | 25.0000 | 100.0000 | .1349 | .2742 .1392 | | | 110 | 27.0000 | 108.0000 | .1372 | .2712 .1340 | | | 120 | 29.0000 | 116.0000 | .1392 | .2686 .1294 | | | 130 | 31.0000 | 124.0000 | .1411 | .2663 .1252 | | | 140 | 33.0000 | 132.0000 | .1427 | .2641 .1214 | | | 150 | 35.0000 | 140.0000 | .1443 | .2622 .1179 | | | 160 | 37.0000 | 148.0000 | .1457 | .2604 .1147 | | | 170 | 39.0000 | 156.0000 | .1470 | .2588 .1118 | | | 180 | 41.0000 | 164.0000 | .1483 | .2573 .1090 | | | 190 | 43.0000 | 172.0000 | .1494 | .2559 .1065 | | | 200 | 45.0000 | 180.0000 | .1505 | .2546 .1041 | | | 500 | 105.0000 | 420.0000 | .1669 | .2352 .0683 | | | 1000 | 205.0000 | 820.0000 | .1761 | .2250 .0489 | | | | | | | | | MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A i. Table 24. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 20, BETA = 5) | | 5) | | | | | |------------------|------------|-----------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | <u>α *</u> | <u>ß *</u> | LOWER
BOUND | UPPER
BOUND | DESIRED
SIZE 2A | | 1 | 20.8000 | 5.2000 | .6298 | .9268 | .2971 | | | 21.6000 | 5.4000 | .6331 | .9250 | .2919 | | 3 | 22.4000 | 5.6000 | .6363 | .9233 | .2869 | | 3 4 | 23.2000 | 5.8000 | .6394 | .9216 | .2823 | | 5 | 24.0000 | 6.0000 | .6423 | .9201 | .2778 | | 5
6
7 | 24.8000 | 6.2000 | .6450 | .9185 | .2736 | | 7 | 25.6000 | 6.4000 | .6476 | .9171 | .2695 | | 8 | 26.4000 | 6.6000 | .6501 | .9157 | :2656 | | 9 | 27.2000 | 6.8000 | .6524 | .9143 | .2619 | | 10 | 28.0000 | 7.0000 | .6547 | .9130 | .2583 | | 15 | 32.0000 | 8.0000 | .6647 | .9070 | .2424 | | 20 | 36.0000 | 9.0000 | .6729 | .9020 | .2291 | | 25 | 40.0000 | 10.0000 | .6798 | .8976 | .2178 | | 30 | 44.0000 | 11.0000 | .6857 | .8937 | .2080 | | 35 | 48.0000 | 12.0000 | .6909 | .8902 | .1994 | | 40 | 52.0000 | 13.0000 | .6954 | .8872 | .1918 | | 45 | 56.0000 | 14.0000 | .6994 | .8844 | .1850 | | 50 | 60.0000 | 15.0000 | .7030 | .8819 | .1789 | | 55 | 64.0000 | 16.0000 | .7062 | .8796 | .1733 | | 60 | 68.0000 | 17.0000 | .7092 | .8775 | .1683 | | 65 | 72.0000 | 18.0000 | .7119 | .8755 | .1636 | | 70 · | 76.0000 | 19.0000 | .7144 | .8737 | .1593 | | 75 | 80.0000 | 20.0000 | .7166 | .8720 | .1554 | | 80 | 84.0000 | 21.0000 | .7187 | .8704 | .1517 | | 85 | 88.0000 | 22.0000 | .7207 | .8690 | .1483 | | 90 | 92.0000 | 23.0000 | .7225 | .8676 | .1451 | | 100 | 100.0000 | 25.0000 | .7258 | .8651 | .1392 | | 110 | 108.0000 | 27.0000 | .7288 | .8628 | .1340 | | 120 | 116.0000 | 29.0000 | .7314 | .8608 | .1294 | | 130 | 124.0000 | 31.0000 | .7337 | .8589 | .1252 | | 140 | 132.0000 | 33.0000 | .7359 | .8573 | .1214 | | 150 | 140.0000 | 35.0000 | .7378 | .8557 | .1179 | | 160 | 148.0000 | 37.0000 | .7396 | .8543 | .1147 | | 170 | 156.0000 | 39.0000 | .7412 | .8530 | .1118 | | 180 | 164.0000 | 41.0000 | .7427 | .8517 | .1090 | | 190 | 172.0000 | 43.0000 | .7441 | .8506 | .1065 | | 200 | 180.0000 | 45.0000 | .7454 | .8495 | .1041 | | 500 | 420.0000 | 105.0000 | .7648 | .8331 | .0683 | | 1000 | 820.0000 | 205.0000 | .7750 | .8239 | .0489 | | | | | | | | Table 25. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 15, BETA = 15) | | 13) | | | | ··············· | |------------------|-------------|------------|-------|--------------|-----------------| | SAMPLE | | | LOWER | UPPER | DESIRED | | SIZE n | <u>a * </u> | <u>β *</u> | BOUND | BOUND | SIZE 2A | | 1 | 15.5000 | 15,5000 | .3280 | .6720 | .3440 | | 2 | 16.0000 | 16.0000 | .3306 | .6694 | .3388 | | 2 3 | 16.5000 | 16.5000 | .3331 | .6669 | .3338 | | 4 | 17.0000 | 17.0000 | .3354 | .6646 | .3291 | | 4
5
6
7 | 17.5000 | 17.5000 | .3377 | .6623 | .3246 | | 6 | 18.0000 | 18.0000 | .3399 | .6601 | .3202 | | 7 | 18.5000 | 18.5000 | .3420 | .6580 | .3160 | | 8 9 | 19.0000 | 19.0000 | .3440 | .6560 | .3120 | | 9 | 19.5000 | 19.5000 | .3459 | .6541 | .3081 | | 10 | 20.0000 | 20.0000 | .3478 | .6522 | .3044 | | 15 | 22.5000 | 22.5000 | .3562 | .6438 | .2876 | | 20 | 25.0000 | 25.0000 | .3634 | .6366 | .2732 | | 25 | 27.5000 | 27.5000 | .3696 | .6304 | .2609 | | 30 | 30.0000 | 30.0000 | .3750 | .6250 | .2500 | | 35 | 32.5000 | 32.5000 | .3798 | .6202 | .2404 | | 40 | 35.0000 | 35.0000 | .3841 | .6159 | .2319 | | 45 | 37.5000 | 37.5000 | .3879 | .6121 | .2242 | | 50 | 40.0000 | 40.0000 | .3914 | .6086 | .2172 | | 55 | 42.5000 | 42.5000 | .3946 | .6054 | .2108 | | 60 | 45.0000 | 45.0000 | .3975 | .6025 | .2050 | | 65 | 47.5000 | 47.5000 | .4002 | .5998 | .1996 | | 70 | 50.0000 | 50.0000 | .4027 | .5973 | .1946 | | 75 | 52.5000 | 52.5000 | .4050 | .5950 | .1900 | | 80 | 55.0000 | 55.0000 | .4072 | .5928 | .1857 | | 85 | 57.5000 | 57.5000 | .4092 | .5908 | .1816 | | 90 | 60.0000 | 60.0000 | .4111 | .5889 | .1779 | | 100 | 65.0000 | 65.0000 | .4145 | .5855 | .1710 | | 110 | 70.0000 | 70.0000 | .4176 | .5824 | .1648 | | 120 | 75.0000 | 75.0000 | .4204 | .5796 | .1593 | | 130 | 80.0000 | 80.0000 | .4229 | .5771 | .1543 | | 140 | 85.0000 | 85.0000 | .4252 | .5748 | .1497 | | 150 | 90.0000 | 90.0000 | .4272 | .5728 | .1455 | | 160 | 95.0000 | 95.0000 | .4292 | .5708 | .1417 | | 170 | 100.0000 | 100.0000 | .4310 | .5690 | .1381 | | 180 | 105.0000 | 105.0000 | .4326 | .5674 | .1348 | | 190 | 110.0000 | 110.0000 | .4341 | .5659 | .1317 | | 200 | 115.0000 | 115.0000 | .4356 | .5644 | .1288 | | 510 | 270.0000 | 270.0000 | .4579 | .5421 | .0842 | | 900 | 465.0000 | 465.0000 | .4679 | .5321 | .0642 | | | | - : | | | | Table 26. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 5, BETA = 30) | | 30) | | | | | |------------------|------------------|--------------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | <u>α *</u> | β * | LOWER
BOUND | UPPER
BOUND | DESIRED
SIZE 2A | | 1 | | | | | | | 1 1 | 5.1429 | 30.8571 | .0505 | .2725 | .2220 | | 2
3
4 | 5.2857 | 31.7143 | .0514 | .2706 | .2192 | | 3 | 5.4286 | 32.5714 | .0523 | .2687 | .2164 | | 4 | 5.5714 | 33.4286 | .0532 | .2670 | .2138
.2112 | | 5
6
7 | 5.7143 | 34.2857
35.1429 | .0540
.0549 | .2653
.2636 | .2088 | | 9 | 5.8571 | 35.1429
36.0000 | .0549 | .2620 | .2064 | | / | 6.0000
6.1429 | 36.8571 | .0557
.0564 | .2605 | .2041 | | 8 9 | 6.2857 | 30.8371
37.7143 | .0572 | .2591 | .2019 | | 10 | 6.4286 | 38.5714 | .0572 | .2577 | .1997 | | 15 | 7.1429 | 42.8571 | .0614 | .2513 | .1899 | | 20 | 7.8571 | 47.1429 | .0644 | .2313 | .1814 | | 25 | 8.5714 | 51.4286 | .0671 | .2411 | .1740 | | 30 | 9.2857 | 55.7143 | .0695 | .2369 | .1674 | | 35 | 10.0000 | 60.0000 | .0093 | .2332 | .1615 | | 40 | 10.7143 | 64.2857 | .0717 | .2332 | .1562 | | 45 | 11.4286 | 68.5714 | .0756 | .2269 | .1513 | | 50 | 12.1429 | 72.8571 | .0738 | .2243 | .1469 | | 55 | 12.1429 | 77.1429 | .0789 | .2218 | .1429 | | 60 | 13.5714 | 81.4286 | .0804 | .2195 | .1392 | | 65 | 14.2857 | 85.7143 | .0817 | .2175 | .1357 | | 70 | 14.2837 | 90.0000 | .0830 | .2173 | .1325 | | 75 | 15.7143 | 94.2857 | .0842 | .2138 | .1295 | | 80 | 16.4286 | 98.5714 | .0854 | .2121 | .1267 | | 85 | 17.1429 | 102.8571 | .0864 | .2121 | .1241 | | 90 | 17.1429 | 107.1429 | .0874 | .2091 | .1216 | | 100 | 17.8371 | 115.7143 | .0874 | .2064 | .1171 | | 110 | 20.7143 | 124.2857 | .0893 | .2041 | .1131 | | 120 | 22.1429 | 132.8571 | .0925 | .2019 | .1094 | | 130 | 23.5714 | 141.4286 | .0939 | .2000 | .1061 | | 140 | 25.0000 | 150.0000 | .0952 | .1982 | .1031 | | 150 | 26.4286 | 158.5714 | .0952 | .1966 | .1003 | | 160 | 27.8571 | 167.1429 | .0975 | .1952 | .0977 | | 170 | 29.2857 | 175.7143 | .0975 | .1938 | .0953 | | 180 | 30.7143 | 184.2857 | .0985 | .1925 | .0931 | | 190 | 32.1429 | 192.8571 | .1004 | .1914 | .0910 | | 200 | 33.5714 | 201.4286 | .1012 | .1903 | .0891 | | 525 | 80.0000 | 480.0000 | .1151 | .1730 | .0579 | | 1015 | 150.0000 | 900.0000 | .1224 | .1646 | .0422 | | | | | | | | Table 27. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 30, BETA = 5) | | 5) | | | | | |------------------|----------------------
--------------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | <u>α *</u> | <u>β *</u> | LOWER
BOUND | UPPER
BOUND | DESIRED
SIZE 2A | | 1 | 30.8571 | 5.1429 | .7275 | .9495 | .2220 | | | 31.7143 | 5.2857 | .7294 | .9486 | .2192 | | 3 | 32.5714 | 5.4286 | .7313 | .9477 | .2164 | | 2
3
4 | 33.4286 | 5.5714 | .7330 | .9468 | .2138 | | 5 | 34.2857 | 5.7143 | .7347 | .9460 | .2112 | | 6
7 | 35.1429 | 5.8571 | .7364 | .9451 | .2088 | | 7 | 36.0000 | 6.0000 | .7380 | .9443 | .2064 | | 8 | 36.8571 | 6.1429 | .7395 | .9436 | .2041 | | 9 | 37.7143 | 6.2857 | .7409 | .9428 | .2019 | | 10 | 38.5714 | 6.4286 | .7423 | .9421 | .1997 | | 15 | 42.8571 | 7.1429 | .7487 | .9386 | .1899 | | 20 | 47.1429 | 7.8571 | .7542 | .9356 | .1814 | | 25 | 51.4286 | 8.5714 | .7589 | .9329 | .1740 | | 30 | 55.7143 | 9.2857 | .7631 | .9305 | .1674 | | 35 | 60.0000 | 10.0000 | .7668 | .9283 | .1615 | | 40 | 64.2857 | 10.7143 | .7701 | .9262 | .1562 | | 45 | 68.5714 | 11.4286 | .7731 | .9244 | .1513 | | 50 | 72.8571 | 12.1429 | .7757 | .9227 | .1469 | | 55 | 77.1429 | 12.8571 | .7782 | .9211 | .1429 | | 60 | 81.4286 | 13.5714 | .7805 | .9196 | .1392 | | 65 | 85.7143 | 14.2857 | .7825 | .9183 | .1357 | | 70 | 90.0000 | 15.0000 | .7845 | .9170 | .1325 | | 75 | 94.2857 | 15.7143 | .7862 | .9158 | .1295 | | 80 | 98.5714 | 16.4286 | .7879 | .9146 | .1267 | | 85 | 102.8571 | 17.1429 | .7895 | .9136 | .1241 | | 90 | 107.1429 | 17.8571 | .7909 | .9126 | .1216 | | 100 | 115.7143 | 19.2857 | .7936 | .9107 | .1171 | | 110
120 | 124.2857
132.8571 | 20.7143 | .7959 | .9090 | .1131 | | 130 | 132.8371 | 22.1429
23.5714 | .7981 | .9075 | .1094 | | 140 | 150.0000 | 25.0000 | .8000
.8018 | .9061 | .1061 | | 150 | 158.5714 | 25.0000
26.4286 | .8018
8034 | .9048
.9036 | .1031 | | 160 | 158.5714 | 20.4280
27.8571 | .8034
.8048 | .9036
.9025 | .1003
.0977 | | 170 | 175.7143 | 29.2857 | .8043
.8062 | .9023
.9015 | .0953 | | 180 | 184.2857 | 30.7143 | .8075 | .9013
.9005 | .0933 | | 190 | 192.8571 | 30.7143
32.1429 | .8073
.8086 | .8996 | .0910 | | 200 | 201.4286 | 33.5714 | .8097 | .8988 | .0891 | | 525 | 480.0000 | 80.0000 | .8270 | .8849 | .0579 | | 1015 | 900.0000 | 150.0000 | .8354 | .8776 | .0423 | | | | | | .0770 | | Table 28. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 6, BETA = 34) | | 34) | | | | | |-----------------------|------------|------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | <u>α *</u> | <u>ß *</u> | LOWER
BOUND | UPPER
BOUND | DESIRED
SIZE 2A | | 1 | 6.1500 | 34.8500 | .0595 | .2726 | .2132 | | | 6.3000 | 35.7000 | .0603 | .2710 | .2107 | | $\overline{3}$ | 6.4500 | 36.5500 | .0611 | .2695 | .2084 | | 2
3
4
5
6 | 6.6000 | 37.4000 | .0619 | .2680 | .2061 | | 5 | 6.7500 | 38.2500 | .0627 | .2666 | .2039 | | ó | 6.9000 | 39.1000 | .0634 | .2652 | .2018 | | 7 | 7.0500 | 39.9500 | .0642 | .2639 | .1997 | | 8 | 7.2000 | 40.8000 | .0649 | .2626 | .1977 | | 9 | 7.3500 | 41.6500 | .0656 | .2613 | .1958 | | 10 | 7.5000 | 42.5000 | .0662 | .2601 | .1939 | | 15 | 8.2500 | 46.7500 | .0694 | .2546 | .1852 | | 20 | 9.0000 | 51.0000 | .0722 | .2498 | .1776 | | 25 | 9.7500 | 55.2500 | .0747 | .2456 | .1709 | | 30 | 10.5000 | 59.5000 | .0770 | .2419 | .1648 | | 35 | 11.2500 | 63.7500 | .0791 | .2385 | .1594 | | 40 | 12.0000 | 68.0000 | .0810 | .2355 | .1545 | | 45 | 12.7500 | 72.2500 | .0828 | .2328 | .1500 | | 50 | 13.5000 | 76.5000 | .0844 | .2303 | .1458 | | 55 | 14.2500 | 80.7500 | .0859 | .2280 | .1420 | | 60 | 15.0000 | 85.0000 | .0874 | .2259 | .1385 | | 65 | 15.7500 | 89.2500 | .0887 | .2239 | .1352 | | 70 | 16.5000 | 93.5000 | .0899 | .2221 | .1322 | | 75 | 17.2500 | 97.7500 | .0911 | .2204 | .1293 | | 80 | 18.0000 | 102.0000 | .0922 | .2188 | .1267 | | 85 | 18.7500 | 106.2500 | .0932 | .2174 | .1242 | | 90 | 19.5000 | 110.5000 | .0942 | .2160 | .1218 | | 100 | 21.0000 | 119.0000 | .0960 | .2134 | .1174 | | 110 | 22.5000 | 127.5000 | .0977 | .2112 | .1135 | | 120 | 24.0000 | 136.0000 | .0992 | .2091 | .1099 | | 130 | 25.5000 | 144.5000 | .1005 | .2072 | .1067 | | 140 | 27.0000 | 153.0000 | .1018 | .2055 | .1037 | | 150 | 28.5000 | 161.5000 | .1030 | .2040 | .1010 | | 160 | 30.0000 | 170.0000 | .1041 | .2025 | .0985 | | 170 | 31.5000 | 178.5000 | .1051 | .2012 | .0961 | | 180 | 33.0000 | 187.0000 | .1061 | .2000 | .0939 | | 190 | 34.5000 | 195.5000 | .1069 | .1988 | .0919 | | 200 | 36.0000 | 204.0000 | .1078 | .1977 | .0900 | | 520 | 84.0000 | 476.0000 | .1217 | .1807 | .0590 | | 920 | 144.0000 | 816.0000 | .1281 | .1733 | .0452 | | L | | | | | | Table 29. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 34, BETA = 6) | | 6) | | | | | |------------------|----------|---|----------------|----------------|--------------------| | SAMPLE
SIZE n | α* | β * | LOWER
BOUND | UPPER
BOUND | DESIRED
SIZE 2A | | 1 | 34.8500 | 6.1500 | .7274 | .9405 | .2132 | | | 35.7000 | 6.3000 | .7290 | .9397 | .2132 | | 1 1 | 36.5500 | 6.4500 | .7305 | .9389 | .2084 | | 3 4 | 37.4000 | 6.6000 | .7320 | .9381 | .2061 | | 1 3 | 38.2500 | 6.7500 | .7334 | .9373 | .2039 | | 6 | 39.1000 | 6.9000 | .7348 | .9366 | .2018 | | 5
6
7 | 39.9500 | 7.0500 | .7361 | .9358 | .1997 | | 8 | 40.8000 | 7.2000 | .7374 | .9351 | .1977 | | 9 | 41.6500 | 7.3500 | .7387 | .9344 | .1958 | | 10 | 42.5000 | 7.5000 | .7399 | .9338 | .1939 | | 15 | 46.7500 | 8.2500 | .7454 | .9306 | .1852 | | 20 | 51.0000 | 9.0000 | .7502 | .9278 | .1776 | | 25 | 55.2500 | 9.7500 | .7544 | .9253 | .1709 | | 30 | 59.5000 | 10.5000 | .7581 | .9230 | .1648 | | 35 | 63.7500 | 11.2500 | .7615 | .9209 | .1594 | | 40 | 68.0000 | 12.0000 | .7645 | .9190 | .1545 | | 45 | 72.2500 | 12.7500 | .7672 | .9172 | .1500 | | 50 | 76.5000 | 13.5000 | .7697 | .9156 | .1458 | | 55 | 80.7500 | 14.2500 | .7720 | .9141 | .1420 | | 60 | 85.0000 | 15.0000 | .7741 | .9126 | .1385 | | 65 | 89.2500 | 15.7500 | .7761 | .9113 | .1352 | | 70 | 93.5000 | 16.5000 | .7779 | .9101 | .1322 | | 75 | 97.7500 | 17.2500 | .7796 | .9089 | .1293 | | 80 | 102.0000 | 18.0000 | .7812 | .9078 | .1267 | | 85 | 106.2500 | 18.7500 | .7826 | .9068 | .1242 | | 90 | 110.5000 | 19.5000 | .7840 | .9058 | .1218 | | 100 | 119.0000 | 21.0000 | .7866 | .9040 | .1174 | | liĭŏ | 127.5000 | 22.5000 | .7888 | .9023 | .1135 | | 120 | 136.0000 | 24.0000 | .7909 | .9008 | .1099 | | 130 | 144.5000 | 25.5000 | .7928 | .8995 | .1067 | | 140 | 153.0000 | 27.0000 | .7945 | .8982 | .1037 | | 150 | 161.5000 | 28.5000 | .7960 | .8970 | .1010 | | 160 | 170.0000 | 30.0000 | .7975 | .8959 | .0985 | | 170 | 178.5000 | 31.5000 | .7988 | .8949 | .0961 | | 180 | 187.0000 | 33.0000 | .8000 | .8939 | .0939 | | 190 | 195,5000 | 34.5000 | .8012 | .8931 | .0919 | | 200 | 204.0000 | 36.0000 | .8023 | .8922 | .0900 | | 520 | 476.0000 | 84.0000 | .8193 | .8783 | .0590 | | 920 | 816.0000 | 144.0000 | .8267 | .8719 | .0451 | | | J10.000 | *************************************** | .0207 | | | Table 30. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 5, BETA = 40) | SAMPLE SIZE n | | 40) | | ··········· | | | |---|------|------------|----------|-------------|-------|-------| | 2 5.2222 41.7778 .0391 .2142 .1751 3 5.3333 42.66667 .0396 .2130 .1734 4 5.4444 43.5556 .0402 .2118 .1717 5 5.5556 44.4444 .0407 .2107 .1700 6 5.6667 45.3333 .0412 .2096 .1684 7 5.7778 46.2222 .0417 .2086 .1669 8 5.8889 47.1111 .0422 .2076 .1654 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 11.1111 .0624 .1715 .1091 85 14.4444 .15.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0688 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 17.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870
.1378 .0508 | | <u>a *</u> | <u> </u> | | | | | 2 5.2222 41.7778 .0391 .2142 .1751 3 5.3333 42.66667 .0396 .2130 .1734 4 5.4444 43.5556 .0402 .2118 .1717 5 5.5556 44.4444 .0407 .2107 .1700 6 5.6667 45.3333 .0412 .2096 .1684 7 5.7778 46.2222 .0417 .2086 .1669 8 5.8889 47.1111 .0422 .2076 .1654 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 11.1111 .0624 .1715 .1091 85 14.4444 .15.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0688 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 17.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 1 1 | 5.1111 | 40.8889 | .0385 | .2154 | .1769 | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 3 | | | | | | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 1 | 5.4444 | 43.5556 | | | | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 5 | | | | | | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 6 | 5.6667 | 45.3333 | .0412 | | | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 7 | 5.7778 | | .0417 | | | | 9 6.0000 48.0000 .0427 .2066 .1639 10 6.1111 48.8889 .0432 .2056 .1625 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 .73.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | 8 | 5.8889 | 47.1111 | .0422 | .2076 | | | 15 6.6667 53.3333 .0454 .2012 .1558 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444
.75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 | 9 | | | | .2066 | .1639 | | 20 7.2222 57.7778 .0474 .1973 .1499 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4414 .75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1755 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 | | | | | .2056 | | | 25 7.7778 62.2222 .0492 .1939 .1447 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8389 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 | | | | | .2012 | | | 30 8.3333 66.6667 .0509 .1908 .1399 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 <td></td> <td>7.2222</td> <td></td> <td></td> <td></td> <td></td> | | 7.2222 | | | | | | 35 8.8889 71.1111 .0525 .1881 .1356 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .098 | | | | | | | | 40 9.4444 75.5556 .0539 .1856 .1317 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 192.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 . | | | | | | | | 45 10.0000 80.0000 .0552 .1833 .1281 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.22222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 < | | | | | | | | 50 10.5556 84.4444 .0565 .1812 .1248 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | 55 11.1111 88.8889 .0576 .1793 .1217 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.44444 .0701 .1601 .0900 150 21.6667 173.33333 .0711 .1587 | | | | | | | | 60 11.6667 93.3333 .0587 .1775 .1188 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 192.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.44444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0855 170 23.8889 191.1111 .0728 .1563 | | | | | | | | 65 12.2222 97.7778 .0597 .1759 .1161 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 | | | | | | | | 70 12.7778 102.2222 .0607 .1743 .1136 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 35 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 | | | | | | | | 75 13.3333 106.6667 .0616 .1729 .1113 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | 80 13.8889 111.1111 .0624 .1715 .1091 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | 85 14.4444 115.5556 .0632 .1703 .1070 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378< | | | | | | | | 90 15.0000 120.0000 .0640 .1691 .1051 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | .1091 | | 100 16.1111 128.8889 .0655 .1669 .1014 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 110 17.2222 137.7778 .0668 .1649 .0982 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 120 18.3333 146.6667 .0680 .1632 .0952 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 130 19.4444 155.5556 .0691 .1615 .0925 140 20.5556 164.4444
.0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 140 20.5556 164.4444 .0701 .1601 .0900 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 150 21.6667 173.3333 .0711 .1587 .0877 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 160 22.7778 182.2222 .0719 .1575 .0855 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 170 23.8889 191.1111 .0728 .1563 .0835 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 180 25.0000 200.0000 .0735 .1552 .0817 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 190 26.1111 208.8889 .0743 .1542 .0799 200 27.2222 217.7778 .0750 .1533 .0783 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 200 27.2222 217.7778 .0750 .1533 .0783
540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | 540 65.0000 520.0000 .0870 .1378 .0508 | | | | | | | | | | | | | | | | 1035 120.0000 960.0000 .0931 .1305 .0374 | | | | | | | | | 1035 | 120.0000 | 960.0000 | .0931 | .1305 | .0374 | Table 31. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 40, BETA = 5) | | <u>5)</u> | | | | | |----------------------------|-----------|---------------|----------------|----------------|--------------------| | SAMPLE
SIZE n | α * | <u>ß *</u> | LOWER
BOUND | UPPER
Bound | DESIRED
SIZE 2A | | 1 | 40.8889 | 5.1111 | .7846 | .9615 | .1769 | | | 41.7778 | 5.2222 | .7858 | .9609 | .1751 | | 3 | 42.6667 | 5.3333 | .7870 | .9604 | .1734 | | 1 | 43.5556 | 5.4444 | .7882 | .9598 | .1717 | | 5 | 44.4444 | 5.5556 | .7893 | .9593 | .1700 | | 2
3
4
5
6
7 | 45.3333 | 5.6667 | .7904 | .9588 | .1684 | | 7 | 46.2222 | 5.7778 | .7914 | .9583 | .1669 | | 8 | 47.1111 | 5.8889 | .7924 | .9578 | .1654 | | 9 | 48.0000 | 6.0000 | .7934 | .9573 | .1639 | | 10 | 48.8889 | 6.1111 | .7944 | .9568 | .1625 | | 15 | 53.3333 | 6.6667 | .7988 | .9546 | .1558 | | 20 | 57.7778 | 7.2222 | .8027 | .9526 | .1499 | | 25 | 62.2222 | 7.7778 | .8061 | .9508 | .1447 | | 30 | 66.6667 | 8.3333 | .8092 | .9491 | .1399 | | 35 | 71.1111 | 8.8889 | .8119 | .9475 | .1356 | | 40 | 75.5556 | 9.4444 | .8144 | .9461 | .1317 | | 45 | 80.0000 | 10.0000 | 8167 | .9448 | .1281 | | 50 | 84.4444 | 10.5556 | .8188 | .9435 | .1248 | | 55 | 88.8889 | 11.1111 | .8207 | .9424 | .1217 | | 60 | 93.3333 | 11.6667 | .8225 | .9413 | .1188 | | 65 | 97.7778 | 12.2222 | .8241 | .9403 | .1161 | | 70 | 102.2222 | 12.7778 | .8257 | .9393 | .1136 | | 75 | 106.6667 | 13.3333 | .8271 | .9384 | .1113 | | 80 | 111.1111 | 13.8889 | .8285 | .9376 | .1091 | | 85 | 115.5556 | 14.4444 | .8297 | .9368 | .1070 | | 90 | 120.0000 | 15.0000 | .8309 | .9360 | .1051 | | 100 | 128.8889 | 16.1111 | .8331 | .9345 | .1014 | | 110 | 137.7778 | 17.2222 | .8351 | .9332 | .0982 | | 120 | 146.6667 | 18.3333 | .8368 | .9320 | .0952 | | 130 | 155.5556 | 19.4444 | .8385 | .9309 | .0925 | | 140 | 164.4444 | 20.5556 | .8399 | .9299 | .0900 | | 150 | 173.3333 | 21.6667 | .8413 | .9289 | .0877 | | 160 | 182.2222 | 22.7778 | .8425 | .9281 | .0855 | | 170 | 191.1111 | 23.8889 | .8437 | .9272 | .0835 | | 180 | 200.0000 | 25.0000 | .8448 | .9265 | .0817 | | 190 | 208.8889 | 26.1111 | .8458 | .9257 | .0799 | | 200 | 217.7778 | 27.2222 | .8467 | .9250 | .0783 | | 540 | 520.0000 | 65.0000 | .8622 | .9130 | .0508 | | 1035 | 960.0000 | 120.0000 | .8695 | . 9 069 | .0375 | | | | | | | | Table 32. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 5, BETA = 50) | | 50) | | | | | |------------------|------------|-----------|----------------|----------------|--------------------| | SAMPLE
SIZE n | <u>a *</u> | <u>β*</u> | LOWER
BOUND | UPPER
BOUND | DESIRED
SIZE 2A | | 1 | 5.0909 | 50.9091 | .0311 | .1781 | .1469 | | | 5.1818 | 51.8182 | .0315 | .1772 | .1457 | | 1 3 | 5.2727 | 52.7273 | .0319 | .1764 | .1445 | | 3 4 | 5.3636 | 53.6364 | .0323 | .1756 | .1433 | | 5 | 5.4545 | 54.5455 | .0326 | .1748 | .1422 | | 6 | 5.5455 | 55.4545 | .0330 | .1740 | .1410 | | 5
6
7 | 5.6364 | 56.3636 | .0333 | .1733 | .1400 | | 8 | 5.7273 | 57.2727 | .0337 | .1725 | .1389 | | 9 | 5.8182 | 58.1818 | .0340 | .1718 | .1378 | | 10 | 5.9091 | 59.0909 | .0343 | .1711 | .1368 | | 15 | 6.3636 | 63.6364 | .0359 | .1679 | .1320 | | 20 | 6.8182 | 68.1818 | .0373 | .1650 | .1277 | | 25 | 7.2727 | 72.7273 | .0386 | .1624 | .1238 | | 30 | 7.7273 | 77.2727 | .0398 | .1601 | .1202 | | 35 | 8.1818 | 81.8182 | .0410 | .1579 | .1170 | | 1 40 | 8.6364 | 86.3636 | .0421 | .1560 | .1139 | | 45 | 9.0909 | 90.9091 | .0431 | .1542 | .1111 | | 50 | 9.5455 | 95,4545 | .0440 | .1525 | .1085 | | 55 | 10.0000 | 100.0000 | .0449 | .1510 | .1061 | | 60 | 10.4545 | 104.5455 | .0457 | .1495 | .1038 | | 65 | 10.9091 | 109.0909 | .0465 | .1482 | .1017 | | 70 | 11.3636 | 113.6364 | .0472 | .1469 | .0997 | | 75 | 11.8182 | 118.1818 | .0480 | .1457 | .0978 | | 80 | 12.2727 | 122.7273 | .0486 | .1446 | .0960 | | 85 | 12.7273 | 127.2727 | .0493 | .1436 | .0943 | | 90 | 13.1818 | 131.8182 | .0499 | .1426 | .0927 | | 100 | 14.0909 | 140.9091 | .0510 | .1407 | .0897 | | 110 | 15.0000 | 150.0000 | .0521 | .1391 | .0870 | | 120 | 15.9091 | 159.0909 | .0531 | .1376 | .0845 | | 130 | 16.8182 | 168.1818 | .0540 | .1362 | .0822 | | 140 | 17.7273 | 177.2727 | .0548 | .1349 | .0801 | | 150 | 18.6364 | 186.3636 | .0556 | .1338 | .0782 | | 160 | 19.5455 | 195.4545 | .0563 | .1327 | .0764 | | 170 | 20.4545 | 204.5455 | .0570 | .1317 | .0747 | | 180 | 21.3636 | 213.6364 | .0577 | .1307 | .0731 | | 190 | 22.2727 | 222.7273 | .0583 | .1299 | .0716 | | 200 | 23.1818 | 231.8182 | .0589 | .1290 | .0702 | | 550 | 55.0000 | 550.0000 | .0693 | .1150 | .0457 | | 1045 | 100.0000 | 1000.0000 | .0746 | .1086 | .0339 | | 1 | | | | | - | Table 33. THE EFFECT OF SAMPLE SIZE ON 95% BAYESIAN CONFIDENCE INTERVALS, WITH BETA PRIOR (ALPHA = 50, BETA = 5) | | 5) | | | | |----------------------------|-----------|------------|--------------|---------------| | SAMPLE | | | LOWER | UPPER DESIRED | | SIZE n | α * | <u>β *</u> | <u>BOUND</u> | BOUND_SIZE 2A | | 1 | 50.9091 | 5.0909 | .8219 | .9689 .1469 | | 1 2 | 51.8182 | 5.1818 | .8228 | .9685 .1457 | | 1 3 | 52.7273 | 5.2727 | .8236 | .9681 .1445 | | 2
3
4
5
6
7 | 53.6364 | 5.3636 | .8244 | .9677 .1433 | | 5 | 54.5455 | 5.4545 | .8252 | .9674 .1422 | | 6 | 55.4545 | 5.5455 | .8260 | .9670 .1410 | | 7 | 56.3636 | 5.6364 | .8267 | .9667 .1400 | | 8 | 57.2727 | 5.7273 | .8275 | .9663 .1389 | | 9 | 58.1818 | 5.8182 | .8282 | .9660 .1378 | | 10 | 59.0909 | 5.9091 | .8289 | .9657 .1368 | | 15 | 63.6364 | 6.3636 | .8321 | .9641 .1320 | | 20 | 68.1818 | 6.8182 | .8350 | .9627 .1277 | | 25 | 72.7273 | 7.2727 | .8376 | .9614 .1238 | | 30 | 77.2727 | 7.7273 | .8399 | .9602 .1202 | | 35 | 81.8182 | 8.1818 | .8421 | .9590 .1170 | | 40 | 86.3636 | 8.6364 | .8440 | .9579 .1139 | | 45 | 90.9091 | 9.0909 | .8458 | .9569 .1111 | | 50 | 95.4545 | 9.5455 | .8475 | .9560 .1085 | | 55 | 100.0000 | 10.0000 | .8490 | .9551 .1061 | | 60 | 104.5455 | 10.4545 | .8505 | .9543 .1038 | | 65 | 109.0909 | 10.9091 | .8518 | .9535 .1017 | | 70 | 113.6364 | 11.3636 | .8531 | .9528 .0997 | | 75 | 118.1818 | 11.8182 | .8543 | .9520 .0978 | | 80 | 122.7273 | 12.2727 | .8554 | .9514 .0960 | | 85 | 127.2727 | 12.7273 | .8564 | .9507 .0943 | | 90 | 131.8182 | 13.1818 | .8574 | .9501 .0927 | | 100 | 140.9091 | 14.0909 | .8593 | .9490 .0897 | | 110 | 150.0000 | 15.0000 | .8609 | .9479 .0870 | | 120 | 159.0909 | 15.9091 | .8624 | .9469 .0845 | | 130 | 168.1818 | 16.8182 | .8638 | .9460 .0822 | | 140 | 177.2727 | 17.7273 | .8651 | .9452 .0801 | | 150 | 186.3636 | 18.6364 | .8662 | .9444 .0782 | | 160 | 195.4545 | 19.5455 | .8673 | .9437 .0764 | | 170 | 204.5455 | 20.4545 | .8683 | .9430 .0747 | | 180 | 213.6364 | 21.3636 | .8693 | .9423 .0731 | | 190 | 222.7273 | 22.2727 | .8701 | .9417 .0716 | | 200 | 231.8182 | 23.1818 | .8710 | .9411 .0702 | | 550 | 550.0000 | 55.0000 | .8850 | .9307 .0457 | | 1045 | 1000.0000 | 100.0000 | .8914 | .9254 .0339 | | | | | | | #### REFERENCES - 1. Larson, Harold J., <u>Introduction to Probability Theory</u> and <u>Statistical Inference</u>, John Wiley & Sons, New York, New York, 1982. - Miller, Irwin and Freund, John E. <u>Probability and Statistics for Engineers</u>, Prentice-Hall, Englewood Cliffs, New Jersey, 1985. - 3. Freund, John E. and Williams, Frank J. <u>Elementary</u> <u>Business Statistics: The Modern Approach</u>, PrenticeHall, Englewood Cliffs, New Jersey, 1982. - 4. Duncan, Acheson J., <u>Ouality Control and Industrial Statistics</u>, Richard D. Irwin, Inc., Homewood, Illinois, 1986. - 5. Zehna, Peter W., <u>Probability Distributions and Statistics</u>, Allyn and Bacon, Inc., Boston, Massachusetts, 1970. #### INITIAL DISTRIBUTION LIST | nter 2 | |----------| | | | | | 2 | | | | 2 | | | | | | 2 | | | | | | Island 4 | | e | | | | 2 | | | | | # FILMED 6